LLM fiir den Hausgebrauch

Karsten Kefler

Version 1.0, 19.01.2026

Inhaltsverzeichnis
Zusammenfassung L L L e e e e e e 1

1 LLM fiir den Hausgebrauch 1
1.1 Motivation e e e e e e 4
1.2 Transformer o e 6
1.3 Mathematische Grundlagen e 7
1.4 FEin Rechenbeispiel o 0 o 17
1.5 Lernprozess und Backpropagation 26
1.6 Wie entsteht das Modell? e e 29
1.7 Modellarchitektur e 38
1.8 Ausblick: Titans e 44
1.9 Grenzen des klassischen Language Modells o L 47
1.10 Fazit und Diskussion e e 48
1.11 GloSsar o o o 49
1.12 Literaturverzeichnis e e e e 50

Zusammenfassung

Dieses Dokument bietet eine technische Einfithrung in Large Language Models (LLMs) fiir Studierende und Prakti-

ker:innen mit Programmiererfahrung. Im Fokus steht das Verstdndnis der zugrundeliegenden Mechanismen - von der

Tokenisierung tiber Self-Attention bis zur Backpropagation.

Anders als produktfokussierte Tutorials behandelt dieses Material die mathematischen Grundlagen auf einem Niveau,

das Intuition und Rechenfidhigkeit verbindet. Begleitende Jupyter-Notebooks ermdglichen das praktische Nachvollzie-

hen aller Konzepte.

Umfang: 49 Seiten | 8 interaktive Notebooks | Glossar mit 40+ Begriffen
Lizenz: CC BY-NC-SA 4.0

1 LLM fiir den Hausgebrauch

Inhaltlich fiithrt dieses Dokument Schritt durch die wichtigsten Bausteine moderner Large Language Models (LLMs):
von der historischen Entwicklung der KI (Symbolic AT — Machine Learning — Deep Learning — LLMs) iiber das

Trainingsprinzip Self-Supervised Learning (Next-Token-Prediction) bis zur grundlegenden Verarbeitungskette im

Modell (Tokenisierung — Embeddings — Transformer/Self-Attention — Logits/Softmax — Loss —

Backpropagation). Ein Schwerpunkt liegt auf der Intuition hinter Self-Attention (Query/Key/Value, Attention-

Gewichte, Kontextvektoren) und darauf, wie daraus kontextabhéingige Bedeutungen entstehen.

Dariiber hinaus behandelt die Présentation wichtige Systemaspekte jenseits des reinen Modells: Vektor-
Datenbanken als semantischer Wissensindex, Retrieval Augmented Generation (RAG) als Kombination aus
Retrieval und Generierung sowie (als Ausblick) Memory-Konzepte wie bei Titans. Abschlielend werden typische
Grenzen und Risiken von LLMs eingeordnet, u.a. Halluzinationen, begrenzte Kontextfenster, Kosten/Compute
und Aspekte wie Robustheit und Sicherheit.

Zielgruppe: Das Material richtet sich an Studierende sowie technisch interessierte Praktiker:innen, die LLMs nicht
nur ,benutzen®, sondern die zentralen Konzepte und den Rechenweg dahinter verstehen méchten (Produkt- oder

Toolkenntnisse sind nicht erforderlich).

Voraussetzungen: Erwartet werden grundlegende Programmiererfahrung (z.B. in Python) und ein Basisverstdndnis
von Mathematik fiir Machine Learning (Vektoren/Matrizen, einfache Funktionen/Gradienten). Details zu Ableitungen,
Softmax/Cross-Entropy oder Rechenbeispielen werden im Dokument schrittweise aufgebaut; tiefe Vorkenntnisse in

Deep Learning oder Transformer-Architekturen sind nicht notwendig.

Wo es passt, sind zusétzlich Links zu Python-Notebooks angegeben, mit denen sich zentrale Konzepte prak-
tisch nachvollziehen lassen (z.B. mathematische Grundlagen, Tokenisierung, Attention-Rechenbeispiele, Next-Token-
Prediction oder semantische Suche). Dadurch eignet sich das Dokument sowohl als Begleitmaterial zur Prasentation

als auch als Nachschlagewerk zum Wiederholen und Vertiefen.

Agenda

1. Motivation

2. Transformer-Architektur & Self-Attention

3. Mathematische Grundlagen

4. Ein Rechenbeispiel: Wie arbeitet das Modell?

5. Wie lernt das Modell?

6. Wie entscheidet das Modell?

7. Modellarchitekturen im Uberblick

8. Titans: Ein Ausblick auf neue Architekturen

9. Grenzen von LLMs

10. Fazit & Diskussion

11. Glossar
Was ist
eigentlich KI?

Einordnung

« Uberblick iiber den roten Faden: Von Motivation und Begriffen bis zu Grenzen und Ausblick.

o Erwartungsmanagement: Fokus auf Grundprinzipien (Transformer, Training, Tokenisierung), nicht
auf Produktmarketing.

e Orientierung fiir die folgenden Kapitel und Demos: Welche Folien sind konzeptionell, welche rechne-

risch.

1.1 Motivation

Motivation: Vom Token zur Antwort

Wie Large Language Models wirklich funktionieren am Beispiel:
»Paris ist die Hauptstadt von?”

Kiinstliche
Intelligenz (KI)

ML ist ein Teilgebiet der KI, bei dem Computer aus Beispielen lernen, ohne explizit programmiert
zu sein. Maschinelles
Ziel: Muster erkennen, Vorhersagen treffen (z. B. Spamfilter, Bilderkennung). Lernen

DL ist eine spezielle Form des maschinellen Lernens, die auf tiefen, kiinstlichen neuronalen Metzen mit
vielen Schichten basiert.

Besonders gut geeignet fiir komplexe Aufgaben wie Spracherkennung, Bildanalyse oder
Textgenerierung (z. B. GPT).

Generative Pretrained Transformer (GPT): ein Deep-Learning-Modell Live-Demo mit LM StUd|0

Generative: Das Modell erzeugt neue Texte (nicht nur klassifiziert)
Pretrained: Vortrainiert auf riesigen Textmengen, bevor es feingetunt wird
Transformer: Architektur mit Self-Attention, Kontext Uber viele Tokens hinweg

Wie kann ein Modell chne Weltwissen korrekte Antworten erzeugen?
Wie entsteht ,Verstehen” allein durch Statistik?

Mensch GPT
Kennt Bedeutung & Kontext Kennt nur Wahrscheinlichkeiten
Kann abstrahieren & hinterfragen Errechnet nachstwahrscheinliches Token
Lernt durch Erfahrung & Feedback Lernt durch Milliarden Token + Loss
a2
Einordnung

o Historische Entwicklung der KI: Symbolic AT — Machine Learning — Deep Learning — LLMs.

o Verschiebung von handcodierten Regeln zu datengetriebenen Représentationen (Features/Embeddings).

o Einordnung von GPT in die DL-/NLP-Landschaft: Transformer als Architektur, Decoder-only als
Modellfamilie.

Einordnung von GPT & Co.

Das Maodell sieht Texteingaben: ,Paris ist die Hauptstadt von”
Es soll das ndchste Token korrekt vorhersagen (z.B. ,Frankreich®)
Das Modell sieht: Tokens, keine Bedeutungen

Lvon®™ = schaut stark auf ,,Hauptstadt™ und etwas auf ,Paris” - daraus entstehen die Gewichtungen

Kurzbeschreibung Typisches Beispiel

Supervised Learning Lernen mit menschlichen Labels Katze vs. Hund, Bildklassifikation

Self-Supervised Learning Labels entstehen aus den Eingabedaten selbst Mext Token Prediction in GPT,
Masked LM in BERT

Unsupervised Learning Keine Labels, Modell erkennt Strukturen selbst Clustering (z. B. K-Means),
Word2Vec-Embeddings

Reinforcement Learning Lernen Uber Belohnung/Bestrafung nach Aktionen Schach, Go, RLHF-Finetuning von
ChatGPT

Warum hier Self-Supervised?

Das Modell bekommt Milliarden Textbeispiele.

Es ,lernt aus sich selbst™:

Bsp: Aus dem Satz , Paris ist die Hauptstadt von Frankreich” schneidet man z. B. ,Frankreich” ab — Aufgabe: Vorhersage dieses Wortes.
Kein Mensch muss manuell annotieren, das macht Self-Supervised Lernen machtig fir LLMs.

Technisch gesehen ist diese Beispiel Supervised Learning (weil Eingabe und Ziel vorliegen), aber die Labels erzeugt der Text selbst = darum nennt
man es Self-Supervised Learning.

Einordnung
o Self-Supervised Learning: Next-Token-Prediction als Trainingsziel (Labels entstehen aus dem Text
selbst).
o Abgrenzung zu Supervised, Unsupervised (Clustering/Embeddings) und RL/RLHF als Feintuning-
Schritt.
e Intuition: Modelle lernen statistische Regularitdten und Weltwissen indirekt {iber Textzusammenhéan-

ge.
o Beispiel: Paris — Frankreich als Illustration fiir Kontextnutzung und semantische Assoziation.

1.2

Transformer

Transformer

LLM Pipeline Uberblick:

Text = Tokenisierung - Embedding —» Attention - Output - Softmax - Loss —» Backpropagation

ENCODER [+

P

Paris ist die
Hawptstadt von

Attention
passiert hier

TRANSFORMER

- ,Paris ist die Hauptstadt von”

- Tokenisierung: Zerlegung in kleinere Tokens,
7. B. ,Paris”, ,ist”, ,die” ...

- Embedding: Jedem Token einen Vektor zuweisen

- Attention; Kontext wird einberechnet; ,, Auf wen soll
ich achten?”

= Output Es wird ein Vektor flir ndchsten Token erzeugt

= Softmax Umwandlung Wahrscheinlichkeiten fiir
alle moglichen Warter

- Loss: Vergleich mit dem Zielwort, um den Fehler
zu berechnen

—> Backpropagation: Fehler wird zurlickgeleitet und
Gewichte angepasst damit das Modell lernt

ENCODER

ADD & NORM
1

Feed forward

R Sl S ™ i "N i - i i

MULTI-HEAD
ATTENTION

Pesitional
Encoding

INPUT
EMBEDDING

Decoder-Encoder-Architektur (links, z.B. T5)
{vereinfacht): In dieser Prasentation liegt der
Fokus aber auf dem Decoder-only Modell GPT,
inshesondere auf dem Self-Attention-
Mechanismus. Einem Maodell, das Token fir Token
vorhersagt, gesteuert durch Self-Attention.

v

Decoder-Architektur (z.B. GPT)

Umgangssprachlich wird
die Decoder-Architeltur
als Language Modell
bezeichnet,

|| pECODER |+ | Attention |

= :) J
Paris ist die Attention
Hauptstadt von passiert hier

INPUT EMBEDDING |

Decoder-only

INPUT
EMBEDDING

Encoder-only BERT Klassifikation, NER (Erkennung Tokens ,sehen sich
benannter Entitdten) gegenseitig”, ganze Eingabe
sichtbar (bidirektional)
Decoder-only GPT Textgenerierung Tokens sehen nur vorherige

Tokens (autoregressiv)

Encoder verarbeitet
Eingabe, Decoder generiert
Ausgabe (mit Cross-

Encoder—Decoder TS5, BART, Marian Ubersetzung, Zusammenfassung

Attention)

Einordnung
o Gesamtpipeline: Text — Tokenisierung — Embedding — (mehrfach) Self-Attention/FFN — Output-
Logits — Softmax — Loss — Backpropagation.
o Trennung von Vorwértsrechnung (Inference) und Training (zusétzlich Loss & Gradienten).
o Decoder-only (GPT) fiir Generierung, Encoder-only (BERT) fir Verstdndnis/Maskierung, Encoder-
Decoder (T5/BART) fir Sequenz-zu-Sequenz.

1.3 Mathematische Grundlagen

Mathematische Grundlagen
Gradientenberechnung

Ziel: Verlustfunktion L minimieren Berghild mit 2 Gewichten {im Rechenbeispiel
Gradient = Richtungsvektor des stirksten Anstiegs: 4, tatsdchlich Millionen)

VL = [0L/dwy, OL/dws, ..., 8L Aw,]
Kettenregel: dL/0W = dL/dz - dz/dW
Beispiel flr lineare Schicht:

2= W - x = dz/aW = xT
SaLfow=(p—-y)-x"
Update-Regel (Gradient Descent):
Wi, = W, —n - OL/OW

Was ist z?

Voraktivierung eines Neurons: Warum Kettenregel?

z=W-x+b Die Lossfunktion hingt nicht direkt von den Gewichten ab.

Lineare Kombination aus Gewichten W — s — 1

und Eingabe o Darum: Loss-Landschaft mit dem Ziel der
Die GraRe, iber die sich der Fehler AL aL Az Minimierung

an die Gewichte weitergibt W gz awW

Die Warter erzeugen Vektoren. Diese Vektoren flieRen in den Attention-Mechanismus, wo diese Wdrter gegenseitig aufeinander ,schauen”.
Am Ende werden die Gewichte so optimiert, dass ,,von” z. B. besser erkennt, dass ,Hauptstadt” wichtig ist.

Dazu verwendet man die Kettenregel, weil der Fehler iber mehrere Zwischenschritte von den Gewichtsmatrizen abhangt.
Die Kettenregel erlaubt es, diese Zwischenschritte sauber zu verrechnen.

Der Gradient sagt dem Maodell, in welcher Richtung und wie stark die Gewichte gedndert werden sollen, damit den Fehler zu verringert wird.

Einordnung

e Optimierung neuronaler Netze: Kettenregel, Gradient Descent, Interpretation der Loss-Landschaft.
o Rolle der Lernrate: Stabilitat vs. Geschwindigkeit (Overshooting vs. langsame Konvergenz).

» Lokale Minima, Sattelpunkte und warum grofie Netze oft trotzdem gut trainierbar sind (Intuition).

A

Notebooks

e Open in Colab: Mathematische Grundlagen (https://colab.research.google.com/github/karkessler/1l
m-hausgebrauch/blob/main/notebooks/kapitel _3_mathematische_grundlagen.ipynb)

https://colab.research.google.com/github/karkessler/llm-hausgebrauch/blob/main/notebooks/kapitel_3_mathematische_grundlagen.ipynb
https://colab.research.google.com/github/karkessler/llm-hausgebrauch/blob/main/notebooks/kapitel_3_mathematische_grundlagen.ipynb

Matrizenrechnung

* Matrixprodukt (Matrix-Vektor-Produkt, lineare Abb.):

. a . -
2= W - x [W Gewichtsmatrix, Vektoren bewegen sich im Vektorraum IR . Die Eingabevektoren (z. B. fiir ,,Paris”,

4 768
% Eingabevektor von ,von" z.B.: [1, 2, 1, 0], LHauptstadt®, ,von” ...} sind bereits in diesem Vektorraum R (tatsdchlichz. B.im R)
z Vektor mit anders codiertem Inhalt)) Die Matrizen W, W\, W, transformieren diesen Vektorraum von x nach z {Dimension

o A(Wx)/OW = X bleibt erhalten) durch Projektion, Drehung usw.

Attention operiert auf den geometrischen Beziehungen in diesem Raum (Ahnlichkeiten,
Richtungen). Dadurch entstehen neue Bedeutungsvektoren, die neue Informationen
enthalten.

* AL/OW = (p—vy] - x {3uBeres Produkt)
+ Interpretation: Gradientenmatrix

* Dimensionsregeln:

a a
WeR™ xeR >zeR Vektor x Gewichtsmatrix Wy, 3D-Tensor

- Matrizenrechnung in neuronalen
Netzen bedeutet:

Man mischt und gewichtet die alten ® 1
Informationen neu, um passendere
Bedeutungsvektoren x zu erzeugen.

Batch {wie viele Beispiele gleichzeitig?): Netz wird parallel gerechnet, 32, 64, 128,...)
Sequenz (wie viele Tokens je Beispiel?): LLMs verarbeiten Sequenz von Tokens
GPT2: Tensor T32¥5125788 padetet; - 32 Satze parallel verarbeitet

- Jeder Satz besteht aus 512 Tokens

- leder Token hat ein 768-dimensionales Embedding

Einordnung
e Matrixrechnung als Grundbaustein: Lineare Projektionen transformieren Vektoren in neue Reprasen-
tationsraume.
o z =W - x: Dimensionalitidten erkliaren (Eingabevektor, Gewichtsmatrix, Ausgabedimension).
o Verbindung zu Transformer: Wq,, Wi, Wy, und weitere Projektionsmatrizen sind genau solche linearen
Abbildungen.
o Interpretation: Gewichte kodieren gelernte Muster; Multiplikation ist ,,Feature-Mischung®/Aggregation.

Wahrscheinlichkeitsrechnung

LLMs sind letztendlich Wahrscheinlichkeitsrmodelle: Sie lernen, fiir jede mogliche Fortsetzung eines Textes die bedingte Wahrscheinlichkeit korrekt
voarherzusagen.

P{E): Wahrscheinlichkeit des Ereignis E - Eingabe-Sequens:

P{A|B): Bedingte Wahrscheinlichkeit von B unter der Bedingung A "Paris ist die Hauptstadt von"
Satz von Bayes:

P(A|B) = P(B|A) - P(A} / P(B)
Erwartungswert: E[X] = § x-P(x;)

=2 LLM berechnet:
P("Frankreich" | "Paris ist die Hauptstadt von")

Klassifikation in LLMs: = Cross-Entropy vergleicht diese Vorhersage mit dem
Likelihood P{y|x) maximieren = rechnen mit Cross-Entropy-Loss tatsdchlichen Zielwort. Erwartungswert (durchschnittlicher
P{y|x) = Wahrscheinlichkeit, dass das Modell das korrekte Fehler tber alle Trainingsbeispiele), dieser wird minimiert.

nichste Wort y vorhersagt, wenn der Kontext x gegeben ist.
- Likelihood-Wahrscheinlichkeit maximieren: Modell soll dem
korrekten nachsten Wort (z. B. , Frankreich”) maglichst hohe
Wahrscheinlichkeit geben.

Vorhersagewahrscheinlichkeiten fir das nachste Wort

10
a4y

0.8
08
2
2
Zo4
£
=

0.2

R o.04 o3 008
o0 I 1 I 1
Frankreich Deutschland Spanilen Italien Osterrelch
.

Einordnung

o Von Logits zu Softmax: Das Modell liefert zunéchst unnormierte Scores (Logits) pro Token.

» Softmax macht daraus eine Wahrscheinlichkeitsverteilung iiber das Vokabular: p(next token |
Kontext).

o Numerische Stabilitit: Softmax wird praktisch stabil gerechnet (z.B. LogSumExp-Trick).

e Vorbereitung fiir Training: Cross-Entropy vergleicht die Verteilung mit dem Ziel-Token.

Was muss in der Vektor-Datenbank stehen, damit ,,Paris“ gefunden wird?

@or-Datenbank
SN 1 Berlin ist die Hauptstadt
, von Deutschland.

Keine Worter,
keine Faktenliste

N v Textpassagen (Chunks) mit Bedeutung

Vektor Originaltext

‘ l |,,Paris ist die Hauptstadt
(g [0‘82’1'13"0'56"'];7] von Frankreich.“)
In der Vektor-Datenbank: ———————

oL b, "N

Gespeicherter Text: Frage:

nParis ist die Haupttadt von » ,, Paris ist die Hauptstadt von?“ '
Frankreich.“ —

~———— Gleiche Bedeutung =» Ahnliche Vektoren = Treffer

Rom ist die Hauptstadt
von ltalien.

Einordnung

o Vektor-Datenbanken speichern keine Wérter, sondern Embeddings von Textpassagen (Chunks).
e Suche erfolgt semantisch: Ahnliche Bedeutung = #hnliche Vektoren (Nearest Neighbor).
o Ergebnis ist Kontextmaterial, das ein LLM zur Antwortgenerierung nutzen kann (statt reines Par-

amterwissen).

Beispiel:
,Paris ist die Hauptstadt von Frankreich.” Die KI sucht nicht nach dem Wort ,,Paris”,

sondern nach Texten mit gleicher Bedeutung.
-?.
Hinweis

o Die Vektor-Datenbank ist ein semantisch durchsuchbarer Wissensindex.

10

Vektor-Datenbank

Frage —Vektor
’Q Was ist die Hau;?tsdat P:ns 'itt‘i‘;t gl gﬂ Die Hauptstadt von
von Frankreich. GUPLELALL oee " Frankreich ist Paris.
von Frankreich.

l LLM — Inferenz
Frankreich liegt

o in Europa. Gewichte unverandert

- .

RAG verandert nicht das Modell — sondern den Kontext.

Exte rner Kontext

&((0

Einordnung

e Briicke zwischen Vektor-Datenbank und RAG-Pipeline: Das Modell bleibt gleich, nur der Kontext
wird ergénzt.

o Retrieval liefert passende Textpassagen; das LLM nutzt sie zur Antwort — ohne Retraining.

o Merksatz: RAG erweitert das Wissen ,zur Laufzeit (iiber Prompt-Kontext), nicht tiber neue Ge-

wichte.

Statt

p(Token, ., | Frage)

rechnet das Modell nun:

p(Token, ,, | Frage + relevanter Kontext)

Der entscheidende Punkt:
Der Kontext stammt aus einer semantischen Suche in einer Vektor-Datenbank. Der relevante Kontext

ist nicht zufillig gewihlt, sondern wird iiber eine semantische Ahnlichkeitssuche (Embeddings, Nearest

11

Neighbor) aus einer Vektor-Datenbank abgerufen.

Dadurch wird die Wahrscheinlichkeitsverteilung der néchsten Tokens stark auf faktisch passende Fortset-

zungen eingeschrankt.

12

Retrieval Augmented Generation (RAG)

Antworten mit externem Wissen

RAG kombiniert Nachschlagen und Generieren.

o Frage des ' @ Embedding @ Retrieval aus @ Kontext fur |) Generierungi

Nutzers der Frage der Vektor-Datenbank \ das LLM l der Antwort
LParis ist die «* Bedeutung als —==fp semantisch > ;’an’s istdie = LLM formuliert die
Hauptstadt von 7« Vektor passende Hauptstadt von Antwort auf Basis
g [0.82,113,-0.56.] Textpassagen Frankreich. « dieses Kontexts
W,

« Vektor-Datenbank:
findet relevantes Wissen

Hauptstadt von
Frankreich.“

+f LLM: formuliert die Antwort
sprachlich korrekt

RAG = Nachschlagen + Formulieren

Einordnung
o RAG kombiniert Retrieval (Kontextbeschaffung) und Generation (Antwortformulierung).
e Ablauf: Frage — Embedding — semantische Suche — relevante Passagen — Prompt mit Kontext —
LLM-Antwort.
o Vorteil: Aktualisierbares Wissen ohne Modell-Retraining; Quellen kénnen zitiert /tiberpriift werden.
o Rollen: Vektor-DB als Wissensindex, LLM als Sprach- und Schlussfolgerungsmodul (auf Basis des
Kontexts).

13

Live-Demo: Semantische Suche mit einer Vektor-Datenbank
Qdrant (Local Mode, ohne Docker)

Paris ist die Hauptstadt Qdrant vector DB

von Frankreich. Paris ist die Hauptstadt
— = von Frankreich.

Berlin ist die Hauptstadt
von Deutschland.

Embedding

Rom ist die Hauptstadt
von Italien.

Search

Was ist die
Hauptstadt von Frankreich?

Query

Einordnung

o Demonstriert den Retrieval-Schritt von RAG in einer echten Vektor-DB (Qdrant, Local Mode).

e Pipeline: Dokumente chunking — Embeddings — Index; Anfrage — Query-Embedding — Similarity

Search.
o Wichtig: Gespeichert werden Textpassagen (mit Metadaten), nicht Stichwortlisten.
o FErgebnisinterpretation: Trefferqualitit hingt von Chunking-Strategie und Embedding-Modell ab.

A

Notebooks

e Open in Colab: Qdrant Demo (https://colab.research.google.com/github/karkessler/llm-hausgebr

auch/blob/main/notebooks/qdrant__demo.ipynb)

14

https://colab.research.google.com/github/karkessler/llm-hausgebrauch/blob/main/notebooks/qdrant_demo.ipynb
https://colab.research.google.com/github/karkessler/llm-hausgebrauch/blob/main/notebooks/qdrant_demo.ipynb

Tokenisierung

Beispiel-Wortfolge:
["Paris", "ist", " die", " Hauptstadt", " von"]
Tokenfolge: ['Paris', 'Gis', 't', 'Gdie', 'GHau', 'pt', 'stadt', 'Gvon’]

Hinweis: Ein Wort besteht aus mehreren Tokens.

Eingabetext: ,Paris ist die Hauptstadt von® = 8 Tokens

Die Token-ID entspricht dem Index

des Tokens im Vokabular.

Das Vokabular ist gro (Zehntausende Tokens), aber
dadurch kann das Modell praktisch jeden Text darstellen.
Und gegeniiber der Gesamtzahl aller moglichen Warter
ist es sogar eher klein.

Embeddings als Matrix X € R%*7%% (GPT2). Jeder Token wird in einen Vektor der Linge 768 abgebildet.

Einordnung
o Sprache wird als Token-Sequenz modelliert (diskrete Einheiten statt ,ganze Sétze“).
o Token kénnen Woérter, Subwords oder Zeichen/Sonderzeichen sein (abhéngig vom Tokenizer).
o Tokenisierung legt fest, welche Muster das Modell tiberhaupt unterscheiden /lernen kann (OOV, Kom-
pression, Mehrdeutigkeit).

o Praktische Konsequenz: Prompt-Design und Kosten hangen stark an der Tokenanzahl.

-,

Notebooks

e Open in Colab: Tokenisierung (https://colab.research.google.com/github/karkessler/llm-hausgebr
auch/blob/main/notebooks/tokenisierung_beispiel.ipynb)

15

https://colab.research.google.com/github/karkessler/llm-hausgebrauch/blob/main/notebooks/tokenisierung_beispiel.ipynb
https://colab.research.google.com/github/karkessler/llm-hausgebrauch/blob/main/notebooks/tokenisierung_beispiel.ipynb

Embeddings

Ein Embedding ist ein Zahlenvektor, der die Bedeutung eines Tokens im Modell darstellt,

Jeder Token wird in einen Vektor im Raum R7°® umgewandelt.

Der Token Paris hat in
LParis ist die Hauptstadt von"

zundchst den gleichen Vektor wie
oParis hat gestern gewonnen” (Token-Embedding (roh), trdgt nur Grundinformationen).

Kontextuelles Embedding:
Dasselbe Token hat je nach Kontext unterschiedliche kontextualisierte
Velktoren, weil der Vektor durch Attention verandert wird:

- Mathematisches Arbeiten mit Bedeutungsraumen:
Worter werden in Vektoren ibersetzt, um mit ihnen zu rechnen, als wéren sie Punkte in einem Koordinatensystem (z.B. Abstand von Vektoren). Diese
Wektoren kdnnen miteinander verglichen werden, z.B. per Kosinus-Ahnlichkeit.

Die hier gezeigten Embedding-Vektoren
entstehen nicht zufallig. Sie wurden beim
Training des Sprachmodells (z. B. GPT,
Gemma) gelernt und sind jetzt fest im Modell
gespeichert.

Bei der Verwendung des Modells {wie in LM
Studio) wird jeder Token einfach in der
gelernten Embedding-Matrix nachgeschlagen.
Es findet kein Training und keine Verdnderung
mehr statt.

Verdandert wird nur der Vektor x, der das
Token reprasentiert. Die Gewichtsmatrizen
bleiben gleich.

(G

Einordnung

o Tokenisierung bestimmt die ,,Auflésung® der Texteingabe: Granularitat von Einheiten im Embedding-

Raum.

o Auswirkungen: OOV-Handling, Robustheit bei seltenen Wortern, Umgang mit Komposita (Deutsch)

und Tippfehlern.

o Modellqualitét héngt auch vom Tokenizer ab (z.B. Vokabulargréfie vs. Sequenzlénge).

o Verweis auf Zusatzmaterial fiir Details und Beispiele.

16

1.4 Ein Rechenbeispiel

Ein Rechenbeispiel: Wie arbeitet das Model?

Betrachtet wird ein konkretes Mini-Beispiel, in dem das Token ,von” im Fokus steht.
Ziel: Das Modell soll lernen, dass das Wort ,von” in diesem $atz besonders eng mit ,,Hauptstadt” und , Frankreich” verknapft ist.

Beispiel-Satz: ,,Paris ist die Hauptstadt von Frankreich von”
Fokus: Das Wort ,,von“ steht im Satz zwischen ,,Hauptstadt” und ,,Frankreich”. Das Modell soll lernen, dass es diese beiden
Worter miteinander verbindet.

Daflir berechnet das Modell:

1. Einen Query-Vektor Q fur ,von”
2. Key- und Value-Vektoren K/V fir die anderen Warter im Satz
3. Attention-Scores: Wer ist wichtig fir ,von“?
leder Token betrachtet alle anderen Tokens, inklusive sich selbst, das nennt man Self-Attention
4, Einen Output-Vektor, also den kontextualisierten Vektor fir ,von”

Was passiert im Hintergrund? Im Training passt das Modell seine Gewichtsmatrizen an, damit ,von” nachstes Mal noch besser
versteht, worauf es achten soll.

- Q/K/V entstehen aus Gewichtsmatrizen
- ,von” vergleicht sich mit allen anderen

- Bei Fehlern werden die Gewichte mit Backpropagation angepasst

Einordnung

Ausgangspunkt: Tokens sind bereits in Embeddings iiberfiihrt; das Modell verarbeitet alle Tokens
parallel.

Self-Attention berechnet fir jedes Token eine gewichtete Mischung der anderen Tokens (Kontextag-
gregation).

Ergebnis: Kontextabhéngige Bedeutung (z.B. ,von“ als Relation, nicht isoliertes Wort).

Intuition: Statt fester Regeln werden Relevanzen aus Daten gelernt (Gewichtungen als ,weiche Re-

geln®).

17

Wort-Embeddings visualisieren

7 Semantische Dimensionen, tatsachlich hunderte oder tausende

0.9 0.1 0.4

Katze 0.6 -0.7 -0.3 -0.2 Reduzierter 2-dimensionaler Raum:

Katzchen 0.5 0.8 -0.1 0.2 -0.6 -0.5 -0.1)

Hund 0.7 0.1 04 03 -0.4 -0.1 -0.3 Katze Hiuser

Hauser -0.8 0.4 -0.5 0.1 -08 0.3 0.8 OO Kitzchen

- Hund
Mann 0.6 -0.2 0.8 0.9 -0.1 -0.9 -0.7
Frau 0.7 03 09 -0.7 0.1 -0.5 -0.4
. Fi
Kénig 0.5 0.4 07 0.8 0.9 07 06 @ ™
Konigin 0.8 0.1 08 -0.8 0.8 -0.5 -0.9 0/ © Konigin
) Mann @

Wort-Embeddings kodieren semantische Bedeutung in Vektoren. Ahnliche Bedeutungen = Kanig
ahnliche Vektoren.

Mann verhalt sich zu Frau wie
Kénig zu Konigin, Vektorpfeil

reprasentiert die semantische
Richtung minnlich = weiblich

Einordnung
o Wort-Embeddings kodieren Bedeutung in kontinuierlichen Vektorrdumen (Distributional Semantics).
e Nihe im Raum korreliert mit semantischer Ahnlichkeit; Richtungen kénnen Relationen ausdriicken
(Analogien).

e Embeddings sind die Schnittstelle zwischen diskreten Tokens und differentiellen neuronalen Netzen.

18

Kontextualisierte Embeddings — vor und nach
Self-Attention

Vor Self-Attention (statisches Embedding) Nach Self-Attention (kontextualisiertes Embedding)
m Jedes Token besitzt niichst éin kontext- m Das Embedding von ,von” wird unter Beriicksich-
unbehdngiges Embedding tigung aller anderen Tokens neu berechnet
m Der Vektor reprasentiert die ,allgemeine Beue- m Tokens wie ,Hauptstadt” und , Frankreich” erhalten
tung von ,von” hohe Attention-Gewichte
m Alle Vorkommen von ,vén” start mit ahlicher B Der neuen Vektor enthilt konkrete Kontextinformation

Reprasentation

Bedeutung: grammatische Praposition, allgemeine Relaton Bedeutung: Beziehung Hauptstadt < Staat
Paris @ Paris @_
@ von (vorher) > ~@ von
von (vorher _ :
Hauptstadt @ Hauptstadt @ (nach Attention)

Einordnung:
Wort-Embeddings sind im Transformer nicht statisch. Durch Self-Attention wird jedes Token-Embedding
kontextabhangig angepasst und tragt anschlieBend Informationen Uber relevante andere Tokens im Satz.

Merksatz: Self-Attention verwandelt statische Wort-Embeddings in kontextualisierte Bedeutungen.

Einordnung
e Self-Attention macht Embeddings kontextabhéngig: gleiche Token-ID kann je nach Satz verschiedene
Vektoren erhalten.
o Das reduziert Mehrdeutigkeit (Polysemie) und kodiert syntaktische/semantische Rollen.
e Beispiel: ,von“ wird zur Relation zwischen ,Hauptstadt® und ,Frankreich“ statt eigenstdndigem
Inhalt.

19

Self-Attention

Jeder Token wird durch Self-Attention abhdngig vom Kontext neu berechnet. Vor Self-Attention wird Positions-Information codiert (Positional
Encoding), sodass die Reihenfolge der Tokens erhalten bleibt.

Die Attention-Gewichte sagen, welche Vektoren (Wérter) wichtig sind.

Es entsteht ein neuer kontextualisierter Vektor pro Token

Beispiel:

-» Der Vektor von ,von" wird neu herechnet, indem er stark auf ,Paris” und ,,Hauptstadt” schaut
= So kann das Modell lernen: ,von" schaut auf ,Hauptstadt”

Paris ist die Hauptstadt
=
e
"‘MH 1 Token-Eingabevektor
von

2 Self-Attention-Schritt Q, K, V & Gewichtung Paris R

* Berechnung von Q, K, V flr jedes Token . i

» Aufmerksamlkeit: Welche Tokens sind wichtig fir welches? ISt it

- z. B. ,von” beachtet ,Paris” und ,Hauptstadt” besonders stark di i
ie Fre

von bildet Q, die anderen bilden K & v
von berechnet:

Quon:WQ' "_e\nan =
Alle Worter (auch ,von”) berechnen: 3 von Xoan
K=W,- X,

Hauptstadt fnaumsradr

VieW, %; Vergleich: Wie &hnlich ist Q,,, mit jedem K;?
—> Dabei sind W, W, W, gelernte Gewichtsmatrizen.

W, € R™, Wy € R W, € R (je nach Modellgréke
d=64, 128, 768, etc.).

Flir jedes Token j berechnet das Modell:

Qvan'KT
In echten Modellen werden diese Berechnungen mehrfach parallel ausgefiihrt: Score= va -
Multi-Head Attention berechnet mehrere Sets von Q, K, V gleichzeitig und kombiniert
sie, umn unterschiedliche Beziehungen gleichzeitig zu lernen. = Das ist ein MakR fir ,Wie sehr passt j zu ,von“?
Einordnung

e Q, K, V sind lineare Projektionen der Token-Embeddings und definieren die Attention-Berechnung.
e Query: ,,Worauf soll ich achten?“ Key: ,,Was biete ich an?“ Value: ,,Welche Information liefere ich?*
« Attention-Gewichte entstehen aus Query-Key-Ahnlichkeiten; Values werden entsprechend gemischt.

o Multi-Head Attention: mehrere parallele Sichtweisen auf Kontext (verschiedene Projektionen).

20

Schritt 1: Eingabevektoren ™! Schritt 2: Gewichtsmatrizen Schritt 3: Berechne von Q,,,

Paris [2,0,1,1] Quon =W - Fpon = [1,2,1,0]

it [0,2,0,1] 1.0 00

die [1,1,0,0] We = 0 100 Die Query Q. entsteht nicht ,aus dem Nichts”,

H tstadt 0131 0010 sondern durch die Gewichtsmatrix W, die das Modell
auptsta 0,1,3,1] 0001 beim Training lernt (kommende Folien).

von (Fokus) [1,2,1,0]

05 0 0 0
*! Hinweis: Diese Vektoren wurden zur WR’ = m, =051= g 005 005 g
Veranschaulichung frei gewshlt. In . eniger Bedeutung zu geben,
einem echten Modell stammen sie aus 0 0 0 0.5 indem es die Gewichtsi n W, entsprechend anpasst.
einer trainierten Embedding-Matrix,
die jedem Token einen Vektor zuordnet.
Schritt 4: Berechne K; = W, * %; Schritt 5: Berechnung der Scores Schritt 6: Softmax-Anwendung
Token K. Qvon'K}r . —
e o S = — td=4=+4=2 Score
Paris [1.0,0.0, 0.5, 0.5] coreE—g ™M Va ;(’ﬁ ;?
ist [0.0, 1.0, 0.0, 0.5] i:'t”s -
die [0.5,0.5, 0.0, 0.0] Toten § Sholarproduit - Score e 1
Hauptstadt 0.0,05, 1.5,0.5 aris . :)
auptsta C] ist 2.0 1.00 Hauptstadt 3.49
))) - die 1.5 0.75
Die Keys K; entstehen durch die Matrix W, die wie W, s B
beim Trairjninggelernt wird. Hauptstadt 2.5 1.25 Ze¥re=1045
Diese Matrix bestimmt, wie sichtbar ein Token fir
andere ist {ob es Aufmerksamkeit bekommit). Softmax-Gewichte a; = efeare;
7= ¥ planre,
Schritt 7: Berechnung V;= W, - %, Schritt 8: Finaler Output-Vektor von ,von” ‘ "
Token Gewicht o
Token |/ Output = Z - V; Paris 0.203
Paris [1.0,0.0,0.5, 0.5] ist 0.260
ist [0.0, 1.0, 0.0, 0.5] = 0.203 - [10,0.0,0.5,0.5] die 0.203
die [0.5,0.5,0.0,0.0] +0.260-[0.0,1.0,0.0, 0.5] Hauptstadt 0.334
Hauptstadt [0.0,0.5, 1.5, 0.5] +0.203 - [0.5, 0.5, 0.0, 0.0]
+0.334-[0.0,0.5,1.5,0.5]
Gewichtete Summe der Value-Vektoren

Auch die Values V; entstehen durch eine lernbare Matrix W, Sie bestimmen, welche Information ein Token weitergibt, wenn es von einem anderen Token beachtet wird
{Attention). Auch W, und W\, werden durch denselben Fehler [Loss) angepasst wie W,

Wenn das Modell z. B. eine falsche Attention-Verteilung lernt, fliefit der Fehler auch zuriick durch W, und W,.-> So werden alle drei Matrizen gleichzeitig trainiert, um bessere
Vorhersagen zu erméglichen.

Einordnung
e Score-Berechnung als skaliertes Skalarprodukt: Score; ; = Q—\/CTKL
o Skalierung mit \/d_k stabilisiert Wertebereiche und Gradienten bei gréfieren Dimensionen.
o Softmax iiber Scores liefert Attention-Gewichte (Summe = 1), interpretierbar als Relevanzen.

o Kontextvektor entsteht als gewichtete Summe der Value-Vektoren.

21

Ergebnis
[0.304, 0.529 ,0.603, 0.339]
Dlesar Vektar 1at der neue, kantextuallslerte Bedeutungsvektar fir das Taken von™ Frsetrt slch aus den gewichteten Reltragen der varherlgen Takens rusammen. Dabel hat Hauptstadt” den starksten Fintluss. In elnem echten

Sprachmodell wilrde dieser Vaktor weiterverwendet, um z. B. den nachsten Token vorherrusagen. Das Modell erkennt 2o achlieBlich Strukturen wie: Hauptstadt von Paris™.
Rer neue Vektar flleBt nun In dle ndchate Varhersage eln: Was folgt aut Haupsstadt von™?

Urspriinglich %, , : | Token | Gewicht o; | Score
[1J 2: 1! O] | """"" I |
| Hauptstadt | £ (0.334) | 1.25
Nach Attention: | ist | (0.260) | 1.00
[0.304, 0.529, 0.603, 0.399) | Paris | (0.203) | 0.75
| die | (0.208) | 0.75

In grofRen Modellen wie GPT oder BERT passiert genau dieselbe Berechnung aber mit typischerweise 768-dimensionalen Vektoren, mehreren
Attention-Heads gleichzeitig und mehrschichtigen Attention-Bldcken. Diese einfache Version ist also ein verstandlicher Ausschnitt dessen, was groRe
Sprachmodelle intern millionenfach anwenden.

Architektur-Vergleich: Unser Beispiel vs. GPT/BERT

Aspekt Rechenbeispiel GPT/BERT-Modell

VektorgroRe (x, Q, K,) 4 768 (oder mehr)

Anzahl Attention-Heads 1 12 (BERT Base), 12-96 (GPT-3/4)
Anzahl Schichten 1 12 (BERT Base), 96+ (GPT-4)
Gewichtsmatrizen 1x W, W, W, Pro Head eigene Matrizen
Berechnung einmalig mehrschichtig & mit Residual + LN

Residual = Skip-Verbindungen (Information wird direkt weitergegeben);
LN = Layer Normalization zur Stabilisierung

Einordnung

e FErgebnis der Attention: neuer Vektor pro Token, der Bedeutung im Satzkontext kodiert.
o Damit kann das Modell Relationen (Subjekt/Objekt, ,von“-Beziehungen, Referenzen) rechnerisch
abbilden.

o Wichtig: ,Verstehen“ im Transformer ist Ergebnis von Matrixoperationen, nicht symbolischer Regeln.
A

Notebooks

e Open in Colab: Attention Rechnung (https://colab.research.google.com/github/karkessler/llm-
hausgebrauch /blob/main/notebooks/attention_ rechenbeispiel.ipynb)

22

https://colab.research.google.com/github/karkessler/llm-hausgebrauch/blob/main/notebooks/attention_rechenbeispiel.ipynb
https://colab.research.google.com/github/karkessler/llm-hausgebrauch/blob/main/notebooks/attention_rechenbeispiel.ipynb

Next Token Vorhersage

Wie entsteht der ndchste Token?
Kontextvektor nach Attention: h = [0.304, 0.529, 0.603, 0.339] (s. Folie 13, Ergebnisse)

Schritt 1: Lineare Projektion auf den Vokabelraum Schritt 2: Berechnung der Logits (Rohwerte)

Man verwendet eine Gewichtsmatrix W, um den Vektor Nach der Multiplikation entstehen die sog, Logits:
in einen Logit-Vektor (Scores flir alle moglichen nachsten

Z = [Zrrankrsich Znewtschlands Zspaniens]
Tokens) zu transformieren: TAMrEIEn? TRRutsETanay Taparian

Das sind reelle Zahlen, z. B. z.,, 0= 325 Zpeuischland= 1-7

z=W_.h+b {b = Bias-Vektor, etc.)

Grundwahrscheinlichkeit
fur jedes Wort)
Der Vektor h stammt aus der Attention-Berechnung fiir
das aktuelle Token (z. B. ,von).

Schritt 3: Softmax liber die Logits

Damit aus den Logits Wahrscheinlichkeiten werden, wird
W_ . hat die Dimension:

out wieder Softmax angewendet:
VokabulargroRe x Hidden-5ize eZroien
. ploken = o——
also z. B. 30.000 = 768 in GPT. X et
Jetzt entstehen Wahrscheinlichkeiten fiir jedes Wort im
In einem Mini-Beispiel kénnten man z. B. ein Vokabular.
hypothetisches kleines Vokabular annehmen: = Im Training vergleicht das Modell diese
Vokabular = {Frankreich, Deutschland, Spanien, ...} Wahrscheinlichkeiten mit dem tatsachlichen ndchsten
Wort.
= Daraus wird ein Fehler berechnet (z. B. Cross-Entropy-
Loss).

- Dieser Fehler wird riickwarts durch das Netz
propagiert, um z. B. die Matrizen W_,, W, W, W, zu
verbessern.

outr

Einordnung
o Next-Token-Prediction: Aus dem Kontextvektor wird iiber eine lineare Projektion ein Logit pro Vo-
kabel berechnet.

o Softmax macht daraus Wahrscheinlichkeiten; Sampling /Decoding bestimmt das tatséchlich generierte
Token.

o Training treibt die richtigen Tokens hoch, indem die Loss (Cross-Entropy) minimiert wird.

23

Schritt 4: Beispielhafte Illustration (vereinfacht):
Nehmen wir an, das Modell wiirde folgende Logits berechnen:

Token Logitz e’ Wahrscheinlichkeit
Frankreich 3.2 245 0.70

Deutschland 1.7 547 016

Spanien 1.2 3.32 0.095

Ergebnis:
Das Modell wihlt mit héichster Wahrscheinlichkeit den nichsten Token Frankreich.

. W Softmax
Attention-Output h » Logits » Wahrscheinlichkeiten

Schritt 5: konkrete Berechnung

Voraussetzungen:
h=[0.304, 0.529, 0.603, 0.399]
Vokabular={Frankreich, Deutschland, Spanien}

Token Gewichtungsvektor (Zeile in W_,,)
Frankreich [1.0,05,1.0,0.5]
Deutschland [0.0, 1.0, 0.0, 1.0]
Spanien [1.0,0.0, 1.0, 0.0]

Rechnung, Schritt 1: Logits berechnen

Zrrankesich = 1.0°0.304 + 0.5-0.529 + 1.0-0.603 + 0.5-0.399 = 1.372
Zpeutschang = 0.0 #1.0-0.529 + 0.0 + 1.0-0.399 = 0.928
Zgyyien=1.0-0.304 + 0.0 + 1.0-0.603 + 0.0 = 0.907
Zuerst Exponentialwerte:

el372=3 94 092827 53, 190722 48

Summe:
Se?=394+253+248=895

P rankreich = 3-94/8,95 = 0.44
Poeutschland = 253!’(895 =0.28
Pspanien = 2.48/8.95=0-28

Token Logit Softmax-Wahrscheinlichkeit
Frankreich 1.372 44% (hochste)

Deutschland 0.928 28%

Spanien 0.907 28%

Einordnung

e Mini-Vokabular macht Softmax konkret: Logits werden exponentiert und normiert.

o Kleine Logit-Anderungen konnen Wahrscheinlichkeiten stark verindern (Sensitivity).

o Decoding-Strategien (Greedy, Temperature, Top-k/Top-p) steuern Vielfalt und Determinismus.

A
Notebooks

e Open in Colab: Next Token Vorhersage 1 (https://colab.research.google.com/github/karkessler/llm-

hausgebrauch/blob/main/notebooks/next__token.ipynb)

e Open in Colab: Next Token Vorhersage 2 (https://colab.research.google.com/github/karkessler/llm-

hausgebrauch/blob/main/notebooks/next__token_prediction_ toy.ipynb)

.él

Hinweis

o LLMs wahlen das wahrscheinlichste néchste Token, nicht ,,die Wahrheit”.

24

https://colab.research.google.com/github/karkessler/llm-hausgebrauch/blob/main/notebooks/next_token.ipynb
https://colab.research.google.com/github/karkessler/llm-hausgebrauch/blob/main/notebooks/next_token.ipynb
https://colab.research.google.com/github/karkessler/llm-hausgebrauch/blob/main/notebooks/next_token_prediction_toy.ipynb
https://colab.research.google.com/github/karkessler/llm-hausgebrauch/blob/main/notebooks/next_token_prediction_toy.ipynb

Self-Attention: Beispiel von ,von’

aktives Token

Fokus auf Token: ,von” > erzeugt Query (Q)

Token Rolle im Satz

von aktives Token

Hauptstadt mdéglicher Bezugspunkt

Paris konkreter geografischer Begriff
ist / die Hilfsworter, grammatisch

Ziel:

Q/ K/ V Funktion

Q: ,Ich méchte wissen, worauf ich mich beziehe.”

K: . lch bin ein Ort*

V: ,Kontext: Stadt, Hauptstadtfunktion.”

K: ,Ich bin ein Eigenname.”

V: ,Kontext: Stadtname, Geografie.”

K/V: gering relevant - kaum Bezug zu ,von”

Lvon” vergleicht seine Query mit allen Keys, gewichtet die Values und erhalt dadurch

kontextuelles Verstandnis:
= ,Ich gehére zur Phrase ,Hauptstadt von ..."

Modell lernt:

Lvon” bekommt hohe Attention auf ,,Hauptstadt”, da ,Hauptstadt von ...”

eine typische Struktur ist.

{

~von' schaut auf die
T-Shirts der anderen

Metapher:

leder Mensch in einem Raum ist ein Token.

leder trdgt ein T-5hirt mit seiner Bedeutung (z. B. , Paris®, ist”,
die”, ,Hauptstadt”, ,von").

Ein Mensch (2. B. ,von") schaut sich die anderen an und denkt
nach:

v Mitwem habe ich am meisten zu tun?”
- Das ist die Query Q von ,von®
* Die anderen tragen Keys K und Values

Element Metapher im Raum

Token ,von” Eine Person mit ,von"-Shirt, die ihre
Aufmerksamkeit verteilt

Qwon ,van” #Worauf beziehe ich mich?”

K von anderen +Was biete ich an Kontext an?" (z. B.
LHauptstadt”)

W von anderen Welchen Kontext bringe ich mit?”

(z. B. ,Ich bin eine Stadt")

Score{Q,K) Wie gut passt das Angebat zum Bed(rfnis von

Lon™?

Attention-Output Mischung der passenden Values —» neuer
Kontext fir ,von"

Einordnung

o Attention-Gewichte sind eine Verteilung dariiber, wie stark ein Token andere Tokens berticksichtigt.

 Visualisierung hilft, syntaktische/semantische Beziige zu sehen (z.B. Subjekt-Verb, Referenzen).

e Wichtig: Hohe Gewichte bedeuten Relevanz im Modell, aber nicht zwingend , Erklarbarkeit* im

menschlichen Sinn.

25

1.5 Lernprozess und Backpropagation

Lernprozess & Backpropagation:
Wie lernt das Modell im Training?

Wie werden die Gewichtsmatrizen gelernt?
Beispiel: Das Modell soll lernen, dass , Frankreich” der richtige nichste Token ist und diesen vorhersagen.

Die Gewichtsmatrizen W, W, W,, werden nicht manuell vorgegeben sondern sie werden vorn Modell trainiert.
Die Matrix W,,,, die den Kontextvektor in Logits fiir die Token-Vorhersage tiberfiihrt, wird ebenfalls Giber Backpropagation angepasst.

Trainingsprozess mit Gradient Descent:

Der Text ,Paris ist die Hauptstadt von Frankreich” wird eingegeben
Das Modell berechnet z. B. fuir das Token ,von® einen Vektor 7,
Dieser Vektor geht in die Vorhersage: Was kommt als nachstes?

Das Modell gibt z. B. ,,Deutschland” aus = falsch. Das Modell berechnet die Wahrscheinlichkeit fur alle méglichen nachsten Tokens.
Das Ziel ist, die Wahrscheinlichkeit flir den korrekten nichsten Token (hier: "Frankreich") zu maximieren.

Der Fehler (Loss) wird berechnet.
Durch Backpropagation wird der Gradientenfluss

perechnet: Beispilhafte Frage, die das Modell stll
Die Matrizen werden mit Gradient-Descent angepasst: ELS yiIbe SHinktion kit b

e dloss Query- Wi Lernt, wie »Worauf will ich achten?”
Wq™ & Wo-n owaQ Matrix gefragt wird
;] Lo . S
{analog fiir W, und W,)) Key-Matrix W, Lernt, ‘\‘.'\.rem. ~Biete ich relevante Information an?
zugehdrt wird
So lernt das Modell, welche Gewichtungen zu guten Value- W, Lernt, was +Was gebe ich weiter, wenn man auf mich
Vorhersagen flihren. Beim spateren Matrix weitergegeben schaut?”
Einsatz werden diese Gewichtungen nur wird
noch angewendet.
i)) Qutput- W Lernt, wie der ~Wie wahrscheinlich ist jedes mogliche Wort?”
Alle vier Matrizen sind lernbare Parameter und Matrix Vektor in

werden durch Backpropagation angepasst. Token-Scores
- Wahrend W, W, W, den Kontext berechnen, iibersetzt wird
wandelt W, , diesen in eine Token-Vorhersage (= Logits)
um.

Einordnung
o Kontextvektor ist die gewichtete Summe der Values: Information wird ,,eingesammelt“ und verdichtet.
e Ergebnis pro Token kann als ,kontextualisiertes Embedding“ verstanden werden.

e Dieser Schritt passiert pro Layer mehrfach und baut schrittweise abstraktere Reprasentationen.

26

Schritt 1: Loss bestimmen (Ausganswerte stark Schritt 2: Gradientenberechnung
vereinfacht)

Ziel: Durch Gradientenabstieg die Gewichte so anpassen, dass Z ndher an

Eingabevektor %,,,,=(1, 2, 1, 0] den Zielwert 0.5 kommt.
wyy beeinflusst x,,
. . Wy beeinflusstx,,,
Wie entsteht Wg? % =Wy Xugn1 Wyy beeinflusst X,
Wy beeinflusst x4
10 0 0 10 0 0
01 0 0 i 01 00
W, = Initial, zur W. =
270 0 1 0 Vereinfachung: 70 0 1 0
00 01 Einheitsmatrix | 00 0 1
1 5
loss=-(z—#)* oloss _ . 5y.x
2 S) Xens
Wie werden die Gewichtsmatrizen gelernt? Einsetzen:
->Gradientenabstieg) F-224-05 =35
Kyon,1 =1
Hierbei: !
Ergibt:
z = tatsdchlicher Zielwert (z. B. perfekte dloss
Bedeutungskomponente) T 351=35
11

Z = aktuelle Modell-Ausgabe (z. B. erste

1
Loss == (4 — 0.5) % = 6.125 (Fehl
Komponente unseres Qutput-Vektors) 088 2((Fehler)

Beispiel:

Gewiinschter Zielwert: z = 0.5 Gradientenabstieg

Aktueller Output (erste Komponente): Lernrate: n=0.1

7 =WgXyan 1 =1x1+1x2+1x1+1x0= 4.0 Update-Regel:

Damit: % — gt\?ss =1-0.1(3.5)=0.65
11

Loss = %(4.0 —05)2=6.125

065 0 0 0

. . 0 100

Neues Wy, (nur erstes Element verdndert) = 0 0 1 0
0 0 01

Einordnung
e Vollstandiges Rechenbeispiel verbindet: Projektionen @), K,V — Scores — Softmax — Kontextvektor.
o Zeigt konkret, wo Multiplikationen, Normalisierung und Summen im Transformer auftreten.

o Gute Stelle, um Dimensionspriifung und Intuition (,woher kommt welche Information?*) zu tiben.

27

Gradientenmatrix im Detail:

Kettenregel: % = all';;ss . a\?\,—zo (Loss hangt von Z und

#von Wy = Kettenregel)

¥ o - 1._?; (Die Value-Vektoren hdangen am Ende Uber
Q,on= W% indirekt von W, ab)

Schritt 1:

dLoss
0z

Wir nehmen wieder:

1. -~g Gloss__
Loss—z(z z)?% , 5, -2

Angenommen:
Z=40,z=05
Dann:
dloss

dz
(Wie verdndert sich der Fehler, wenn ich an W, drehe?)
= Wenn £ groRer, wire der Fehler kleiner

=40-05=35

Schritt 2:

dz
awQ

[Wie stark andert sich der Qutput z~, wenn man W, verandert?)

Quonzwu'xﬂuon
Somit hingt Z von W, ab Gber x”,,,

von direkt ab. Und der Gradient der Matrix-Multiplikation
ist:
aQvon

d—%s = jeweils die i-te Zeile: x,

won,j

Da W, eine Diagonalmatrix ist, kénnen wir sagen:

0z
Fwwkk- % Vi1 Xuon

Da wir aber — um es flr deine Folie vereinfacht
darzustellen — am Anfang nur den direkten Einfluss
nehmen, setzen wir:

0z
dwkk" xvcn,k

Das heiRt (direkter Einfluss auf jede Diagonalkomponente
von Wg):
Komponente X,

Wiy

Einordnung

e Zusammenfassung der Attention-Schritte als wiederverwendbares , Rezept*.

e Betonung der Kernidee: Relevanzgewichtung statt fester Regeln.

o Briicke zu Multi-Head /mehrere Layer: derselbe Mechanismus wird wiederholt und kombiniert.

28

1.6 Wie entsteht das Modell?

Schritt 3: Schritt 4: Update mit Lernrate
dloss Lernrate n=0.1
aw,

Update-Regel:
Oloss _dloss 07

oW, - dz owQ

Die Ableitung des Loss nach einem Gewicht hangt davon
ab, wie sich Z durch dieses Gewicht verandert,

dloss
owy,

Mach Kettenregel:

neu_ .
Wit = WN

Lernrate n=0.1. Sie bestimmt, wie stark das Modell reagiert. Héhere
Werte = schneller, aber instabiler.

Einsetzen:
Komponente Berechnung Ergebnis Komponente Berechnung Ergebnis
Wi 351 3.5 Wiy 1-0.135 0.65 (verringert)
Wis 3.52 7.0 Wsy 1-0.1-7.0 0.3 (noch starker verringert)
W 351 3.5 Wss 1-0.135 0.65 (verringert)
Wiy 350 0 W 1-0.10 1.0 (unverandert)
Neue W"

- Interpretation:
Je gréRer x, desto starker der Gradient (mehr Einfluss W, =
auf Ergebnis)

Wenn man w,, leicht erhéht, steigt Z und der Fehler
verkleinert sich, da man ndher an z=0.5 herankommt.
Das Modell passt sich in Richtung des Zielwerts z=0.5 an.

Man sieht, wie der Fehler auf alle Gewichtsmatrix-Eintrage wirkt.

Je stirker die Komponente im Eingabevektor war, desto groRer der
Gradient.

*) Zur Vereinfachung Diagonalmatrix und Gradient nur fiir Diagonalelemente
berechnet. In der Realitit eine volle Matrix.

Einordnung
e Softmax erzeugt Wahrscheinlichkeiten; Cross-Entropy misst, wie gut die Verteilung zum Ziel-Token
passt.
o Backpropagation liefert Gradienten fiir alle Gewichte (inkl. Projektionen in Attention und Output-
Layer).

e Training ist systematisches Anpassen der Gewichte, um die Loss iiber viele Beispiele zu senken.

29

Schritt 5: Neuer Iterationschritt®

Aus letzten Schritt W,

065 0 0 0
0 030 0 0
Wo= 0 065 O
0 0 0 1.00

Denselben Eingabevektor:
xvon=[1,2,1,0]

Schritt 1: Neuen Output z~ berechnen

Daz :Wq-x-'von {nur diagonal!), rechnet man:

(Es wird nur eine Komponente Z betrachtet.)
#=0.651+0.3-2+0.65-1+ 1.0-0 = 0.65+0.6+0.65+0 = 1.90

Z ist jetzt 1,90 (vor dem Update 4.0}. Das Netz scheint in die richtige
Richtung zu lernen.

Schritt 2: Loss berechnen

Ziel z=0.5

Loss=1/2{z-)2 =1/2(0.5-1.90)2=1/2(-1.40)?=0.98

Der Fehler ist kleiner geworden [vor dem Update 6.125).

Schritt 3: Gradienten berechnen
dloss/dZ=7-2=190-05=14

Schritt 6: Neue Gewichtsmatrix W, berechnen mit Lernrate n=0.1

Whed = W - r-Gradient

Komponente Rechnung Ergebnis
wll 0.65-0.1-1.4 051
w22 0.30-0.1-2.8 0.02
w33 0.65-0.1-1.4 051
wid 1.00-0.1-0.0 1.00
0.51 0 0 0
_ 0 002 0 0
We=19 "o o051 o
0 0 0 1.00

Interpretation:

Das Modell hat im 1. Update gelernt, dass der Qutput zu hoch war
(Z =1.9). Es reduziert die Gewichte leicht, besonders dort, wo der
Einfluss am starksten war (z. B. wy,).

Dadurch nihert sich der Output dem Ziel z=0.5 und der Fehler wird
kleiner.

- S0 funktioniert Gradient Descent: gréBerer Einfluss = stirkeres
Update.

*} Hinweis: Zur Vereinfachung wird hier nur der direkte
Einfluss der gednderten Wo-Matrix auf den Query-Vektor
gezeigt, um den Effekt der Lernrate zu demanstrieren, In

Komponente Rechnung Ergebnis einem echten Durchlauf misste der gesamte Attention-
Output {Schritte 3-8, Folie 12) neu berechnet werden, was zu

wil 141 14 einem anderen, aber konzeptionell dhnlichen Lerneffekt

w22 1.4-2 2.8 fihren wirde.

w33 1.4-1 1.4

wid 1.4-0 0

Einordnung

o Lernprozess als Klassifikation: Néchstes Token ist eine Klasse im Vokabular.

e Ziel ist nicht ,Wahrheit“, sondern md&glichst hohe Wahrscheinlichkeit fiir das korrekte Fortsetzungs-

token im Trainingskorpus.

o Verbindet probabilistische Sicht (Verteilungen) mit Optimierung (Loss-Minimierung).

30

Weiter Schritte 5: Das Netz lernt durch Fehlerkorrektur

0 4.00 3.50

1.000 1.000 1.000 1.00

1 1.90 1.40 0.650 0.300 0.650 1.00
2 1.060 0.56 0.510 0.020 0.510 1.00
5 0.724 0.224 0.454 -0.092 0.454 1.00
4 0.590 0.90 0.432 -0.137 0432 100
5 0.54 0.04 0.42 0.15 0.42 1.00
Beobachtungen:

1. Stahile Konvergenz: Das System nahert sich stetig dem Ziel 0.5

2. w,, wird negativ: Das System lernt, die starke Eingabe "2" zu kompensieren
3. w,, bleibt unveréndert: Da die Eingabe dort 0 ist, gibt es keinen Gradienten
4. Symmetrie: wy, und ws; entwickeln sich identisch (gleiche Eingabe "1")

Die Einheitsmatrix ist ein "neutralerer" Startwert als die zufilligen Gewichte aus dem ersten Beispiel

Ergebnis: Das System hat erkannt, dass bei diesem Kontext der Token ,Frankreich”
wahrscheinlicher ist. Es soll also auf ,,Frankreich® achten.

Einordnung
e Vertiefung: Iteratives Update der Gewichte {iber viele Schritte und Mini-Batches.
o Unterschied Train/Inference: During training wird das korrekte Token ,vorgegeben“ (Teacher For-
cing).

o Generalisierung: Modell lernt Muster, die auf neue Texte iibertragen werden sollen.

A

Notebooks
« Open in Colab: Gradientenabstieg Iteration (https://colab.research.google.com/github /karkessler/11
m-hausgebrauch /blob/main/notebooks/gradient_ descent_wq_ diagonal.ipynb)

31

https://colab.research.google.com/github/karkessler/llm-hausgebrauch/blob/main/notebooks/gradient_descent_wq_diagonal.ipynb
https://colab.research.google.com/github/karkessler/llm-hausgebrauch/blob/main/notebooks/gradient_descent_wq_diagonal.ipynb

Kontextvektor & Weiterverarbeitung

Nach dem Lernprozess (z. B. Schritt 3-5) wird der gelernte Kontextvelktor weiterverarbeitet, z. B. durch Feedforward-Netze und LayerNorm. Diese
Schritte wurden im Lernbeispiel zur Vereinfachung weggelassen.

Die Zwischenschritte LayerNorm, Feedforward etc. dienen dazu, das Modell robuster und leistungsfahiger zu machen, sind aber fiir das einfache
Lernbeispiel nicht entscheidend.

- In diesem Beispiel betrachten man nur den Self-Attention-Schritt. In GPT/BERT folgen danach noch weitere Verarbeitungsschritte wie
Feedforward-Blocke (MLP), Residual Connections und Layer Mormalization, die hier zur Vereinfachung ausgelassen wurden.

Einordnung

o Weitere Aspekte des Lernprozesses: Regularisierung, Overfitting, Trainingsdatenqualitét.
o Praktische Stellschrauben: Batchgrofie, Learning-Rate-Schedule, Weight Decay.
o Intuition: Gute Performance entsteht aus Daten, Architektur und Training zusammen (nicht nur

»mehr Parameter).

32

Wie lernt das Modell?

LW =(p—y) - K

Woe = Wy —n - 9L/0W

Backpropagation: Der berechnete Gradient wird durch das Netzwerk zurlickgerechnet und aktualisiert die Gewichte entlang aller Schichten.
(Riickpropagation: Der Fehler wird durch das Netz zuriickgeleitet)

- Wiederholung Giber Millionen Datensitze

Wie lernt das Modell? - Vorwarts- und Ruckwartsdurchlauf

Softmax
Input Self-Attention Output Layer Cross-Entropy
(Tokens) & Hidden Layers (Logits z) Loss L

- -
- Vorhersage erzeugen =2

Fehler rickwarts
weiterleiten

Ruckpropagation {Gradient)

Einordnung
e Zusammenfassung: Optimierung minimiert Loss; Gradienten sagen, wie Parameter angepasst werden.
o Blick auf die Praxis: Pretraining vs. Finetuning und warum Datenmengen entscheidend sind.

« Ubergang zu Architekturfragen: Was genau wird in welchen Schichten gelernt?

33

Wie entscheidet das Modell:
Decoder-Vorhersage

Beim vorherigen Lernen von W, lernte das Modell, wie es aus dem Eingabekontext eine sinnvolle Représentation erzeugt (7). Jetzt lernt es, wie es
diese Reprasentation verwendet, um den richtigen niachsten Token {z. B. ,Frankreich®) vorherzusagen, mithilfe von Softmax, Cross-Entropy und
einem weiteren Gewichtsmatrix-Update.

Vektor = Logits (Scores) Gber alle Wérter im Vokabular (z. B, 50.000)

Softmax = Wahrscheinlichkeiten Gber das Vokabular (die rohen Scores selbst sind noch keine Wahrscheinlichkeiten)
eScorL'.Ium

Héchste Wahrscheinlichkeit = ,,Frankreich”

Optional: Sampling, Top-k fiir kreative Textgeneratoren (ChatGPT etc.)

Vektor = Logits (Scores) = Softmax = Wahrscheinlichkeiten = héchstwahrscheinlicher Token --ID=>

Tokenizer = Wort

Formel Proken =

Rickiibersetzung des Tokens:

Héchste Wahrscheinlichkeit = z. B. Token-ID 12856
Tokenizer-Umkehrung:
12856 - "Frankreich"

Softmax-Ausgabe -+ Token-ID + Tokenizer - Wort

+
ID:

(G

Einordnung
o Gesamtiiberblick verbindet: Tokenisierung — Représentationen — Attention — Output — Loss —
Update.
o Nitzlich als mentale Landkarte: Wo greifen Demos/Rechenbeispiele in die Pipeline ein?

o Vorbereitung fiir Modellvergleich und Bausteine des Transformers (Residuals, LayerNorm, FFN).

34

Beispiel: Softmax & Cross-Entropy (Update fir W_)

Das Beispiel zeigt, wie das Modell durch Training an W,,, lernt, welche Tokens es mit welcher Wahrscheinlichkeit vorhersagen soll.
Ziel: das Modell soll lernen, welches Wert mit welchem Vektor verknlpft ist.

p = Softmax(z) {p = Wahrscheinlichkeitsverteilung von Vokabular)
Cross-Entropy Loss: —log(p,) {y = One-Hot-Zielvektor: richtiges Wort 1, sonst 0)
Cross-Entropy = misst Abstand zwischen Ziel y und Vorhersage p
Negativer —Log-Wert der Wahrscheinlichkeiten fiir das Ziel-Token k.

Gradient bzgl. z: dLfdz=p -y
Ableitung des Loss nach den Logits

Gradienten bzgl. W: dL/8W = (p -y} - x"
Ableitung der Gewichtsmatrix W

le hiher py .y, desto kleiner der Loss
- das ist die zentrale Lernidee,

Bsp.1

z=[2.0,1.0,0.1]

Softmax(p) = [0.6590, 0.2424, 0.0986] &
y=[1,0,0]

p—vy=[-0.3410, 0.2424, 0.0986]

dL/dz = [-0.2410, 0.2424, 0.0986]

% =[1.5, 0.5] (Frgebnis van Attention)
—0.5115 —-0.1705

BLJ‘dW:{p-v)'xT:(0.3639 01212)
0.1479 0.0493

Bsp.2
z=[3.52, 2.37, 1185, 0.07]

p = [0.692, 0.219, 0.066, 0.022)
v=[1,0,0,0]

p - y= [-0.308, 0.219, 0.066, 0.022]
dL/dz = [-0.308, 0.219, 0.066, 0.022]
x=[1.2,08,05]

Fehler (Cross-Entropy):
L=—log(p.

Néchste Iteration:

=-log(0,6590)=0,417

= Je wahrscheinlicher das Zielwort isf

to kleiner ist der Fehler {Logarithmus)

Neuer Wert: prrnraci=0,85 = L=0,163 = Fehler wurde kleiner

Klasse 1 {Tokens}: ,Frankreich”, Klasse 2: , Deutschland”, Klasse 3: ,Spanien” (tatsachlich z.B. 50.000 Warter)

Zielwort ,Frankreich”y =[1, 0, 0]
z=[2.0, 1.0, 0.1],

Logits: Ausgaben nach der letzten linearen Schicht des Modells vor der Softmax

Klasse p-y

Klasse 1 -0.3410
Klasse 2 +0.2424
Klasse 3 +0.0986

Gradientzeile [p-y] - x
[-0.5115, -0.1705]
[+0.3636, +0.1212]

[+0.1479, +0.0493]

Bedeutung

Modell war zu sicher fiir Klasse 1 (war ja
das Ziel}, daher negatives Update

Modell war hier zu unsicher, daher positive
Korrektur

Modell hat hier auch leicht zu wenig
Wahrscheinlichkeit gegeben

Ziel: Der Fehler L=—log{Pf aniqeich) 0,417 soll durch Anpassung von Wout minimiert werden.

Klasse 1 (Tokens): ,Frankreich®, Klasse 2: ,Deutschland”, Klasse 3: ,Spanien”, Klasse 4: Italien)

Zielwort ,Frankreich” y =[1, 0,0, 0]

_0.3696 —02464 —0154 Klasse p-v Gradientzeile {p - y) - x Bedeutung
aL/ow = 0.2628 01752 0.1095 Klasse 1 -0.308 [-0.3696, —0.2464, -0.154] Zielklasse: Modell war gut, aber noch
0.792 00528 0.033 nicht negative Korrektur
00264 00176 0.011 Klasse 2 +0.219 [+0.2628, +0.1752, +0.1095] Wahrscheinlichkeit fiir Klasse 2 erhéhen
Klasse 3 +0.066 [+0.0792, +0.0528, +0.0330] Wahrscheinlichkeit flir Klasse 3 leicht
erhhen
Klasse 4 +0.022 [+0.0264, +0.0176, +0.0110] Wahrscheinlichkeit fiir Klasse 4 minimal
erhdhen
Einordnung

e Softmax & Cross-Entropy als zentrales Duo: Wahrscheinlichkeiten erzeugen und Fehler messen.

o Interpretation: Cross-Entropy bestraft ,selbstsichere® falsche Vorhersagen besonders stark.

o Verbindet mathematische Formel mit praktischem Training: Loss dient als Optimierungsziel.

A

Notebooks

» Open in Colab: Softmax & Cross-Entropy (https://colab.research.google.com/github/karkessler/llm-

hausgebrauch/blob/main/notebooks/decoder__softmax__crossentropy_wout.ipynb)

35

https://colab.research.google.com/github/karkessler/llm-hausgebrauch/blob/main/notebooks/decoder_softmax_crossentropy_wout.ipynb
https://colab.research.google.com/github/karkessler/llm-hausgebrauch/blob/main/notebooks/decoder_softmax_crossentropy_wout.ipynb

Training vs. Inferenz — Was passiert wann?

. Ttraining (offline, teuer)
¢ Millionen Texte
* Mext-Token-Prediction
* Loss & Backpropagation
* Gewichte werden verdndert

. Inferenz {online, schnell)
* Nur Vorwartsrechnung
* Kein Lernen
* Wahrscheinlichkeitsbasierte Auswahl

= Beim Antwaorten fernt das Modell nicht, es rechnet nur.
> [TRAINING] ——» [FERTIGES MODELL | —» [INFERENZ |

Bis hierhin wissen wir: Beim Antworten lernt das Modell nicht,

Wenn wir wollen, dass es trotzdem aktuelles oder spezifisches

Wissen nutzt, miissen wir dieses Wissen vor der Modellrechnung einspeisen.
Genau das macht RAG.

Einordnung
e Vergleich GPT vs. BERT: Decoder-only generiert autoregressiv, Encoder-only lernt bidirektionale
Représentationen.
o Unterschiedliche Pretraining-Objectives (Causal LM vs. Masked LM) fiithren zu unterschiedlichen
Starken.
o Praktische Konsequenz: Wahl der Architektur héngt von Aufgabe ab (Generierung vs. Klassifikati-
on/Extraktion).

36

Retrieval Augmented Generation (RAG)

Kernaussagen:
— Teil der Inferenz (kein Training)
— LLM-Gewichte bleiben unverdndert
— Externes Wissen wird als Kontext ergdnzt
— Antwort = Sprachmodel| + Kontext

= Merksatz:
RAG verdndert nicht das Modell — sondern den Kontext.
Man hat esehen: Beim Antworten lernt das Modell nicht.
RAG ist deshalb kein Training, sondern ein vorgeschalteter Schritt.
Relevante Texte werden gesucht und als Kontext libergeben —
das Modell formuliert daraus die Antwort.
Die Gewichte bleiben unverdndert.

_ Vektor_Datenbank
G E 5 = Frage —Vektor
Training Gewichte dndern sich Externer Kontext
([—
i |

Inferenz Gewichte fix "@ Was ist die Hauptsdat Paris ist die S - e
g (=

Die Hauptstadt ven

von Frankreich? vgf;“ﬁ:fi:ich Frankreich ist Paris,
LLM — Infe
7 = ! Frankreich liegt pkictats
RAG Kontext wird erganzt in Eurapa. Gewichte unverandert
=2 >,
Vektor- WFSSEI‘ISquE”E RAG verandert nicht das Modell — sondern den Kontext.
DB
Einordnung

o Feed-Forward-Netz (FFN) erweitert die Kapazitit pro Token nach der Attention (nichtlineare Trans-
formation).

e Residuals stabilisieren Training tiefer Netze und erleichtern Gradientenfluss.

o LayerNorm normalisiert Aktivierungen und verbessert Trainingsstabilitdt (insb. bei groflen Model-

len).

37

1.7 Modellarchitektur

Modellarchitekturen im Uberblick

Modellarchitektur

Einbettung der Rechenschritte: Architekturtyp Beispiel
Token - Embedding (Vektorraum) - Attention (Self-Attention &

Transformer-Blocke) - Lineare Projektion

Encoder-onl BERT Klassifikation, bidirektional
(z=W_out - h +b) - Softmax (p) - Loss (Cross-Entropy) U NER
Wichtige Bestandteile: Decoder-only GPT Textgenerierung Autoregressiv
Embedding-Schicht: Token werden in
Vektoren (z. B. 768 Dimensionen) umgewandelt. e TS Ubersetzung Encoder: bidi
Multi-Head Self-Attention: Tokens schauen aufeinander - BEreilar BART Summarizat;on Fersner

Berechnung der Kontexte.

Feedforward-Schichten (MLP): Weiterverarbeitung nach Attention.

Lineare Projektion (Qutput Layer): Berechnung der Logits (z).

Softmax & Cross-Entropy: Umwandlung in Wahrscheinlichkeiten und Berechnung des Loss.

- Softmax berechnet Wahrscheinlichkeiten p:

- Cross-Entropy misst Abstand zur Zielwahrscheinlichkeit.

Backpropagation & Gradientenabstieg: Optimierung der Gewichtsmatrizen (W, W, W,, W__}.
- Wiederholung Giber viele Layer

(z. B. GPT-3: 96 Transformer Layer)

autoregressiv

- Training auf Milliarden Beispielen Modellarchitektur: Einbettung der Rechenschritte
o | (e el B O g e
] § J / J

Rlckpropagation (Gradientzn)

Einordnung

o Vertiefung Modellarchitekturen: Bausteine wiederholen sich pro Layer (Attention + FFN + Norm +
Residual).

o Skalierungsgesetze (grobe Intuition): Mehr Daten/Parameter/Compute fithren oft zu besseren Mo-
dellen.

e Architekturentscheidungen beeinflussen Latenz, Speicherbedarf und Kontextlange.

38

Interpretation & Kontrolle

Softmax-Summe = 1, es werden folglich Wahrscheinlichkeitsverteilungen erzeugt.

Der Gradient zeigt, wie die Gewichte geédndert werden mussen, um den Fehler zu verringern.

Die lacobi-Matrix J;=8z,/0p, beschreibt, wie stark kleine Anderungen der Fingabe z jeden einzelnen Softmax-Ausgabewert p, beeinflussen
(Sensitivitit aller Klassen auf Logit-Anderungen).

LLMs sind Wahrscheinlichkeits-Vervollstdndiger. Sie schdtzen Wahrscheinlichkeiten fiir sinnvolle ndchste Tokens (Vervollstandigung von Texten).

Begriff Was ist es? Wofiir verwenden wir es? Beispiel
Gradient Vektor der partiellen Ableitungen einer skalaren Funktion Fiir Funktionen L(z), also z. B. den Loss Nabla L
Jacobi-Matrix ~ Matrix aller partiellen Ableitungen einer Vektorwertigen Funktion Wenn eine Funktion mehrere Ausgaben hat, J

z. B. Softmax p = f(z)

Gradient = Richtung der Fehlerkorrektur
Jacobian = Sensitivitat der Ausgaben auf Eingaben

Einordnung
o Zusammenfassung der Architektur-Bausteine und ihrer Rollen (Aufmerksamkeit, Nichtlinearitét, Sta-
bilisierung).
e Mentales Modell: Attention mischt Information iiber Positionen, FFN transformiert pro Position.

e Briicke zu neueren Varianten: effiziente Attention, langere Kontexte, Speichermechanismen.

39

Biologisches Neuron vs. Kunstliches
Neuronales Netz

Biologisches Gehirn {Neuron) Kiinstliches neuronales Netz (LLM)

Neuronen (Zellen) Vektoren

Synapsen (Verbindungen, Verstarkung/Abschwachung) Gewichtsmatrizen (z. B. Wp, W, W)

Signalweitergabe per Neurotransmitter Matrix-Multiplikation & Aktivierungsfunktionen (Attention), GeLU (Feedforward)

Lernen durch Plastizitat (z. B. synaptische Verstarkung) Gradientenabstieg (Backpropagation)

Sehr energieeffizient, biologisch flexibel Hoher Rechenaufwand, hochparallel auf GPUs

Was ist die Mathematik dahinter?

Vektaren, Matrizen, Wahrscheinlichkeiten = Grundbausteine
Matrixmultiplikation + Aktivierungsfunktionen erzeugen ,Verstehen”
Softmax erzeugt Wahrscheinlichkeiten

Cross-Entropy misst, wie falsch das Modell liegt

—» Das macht Lernen durch Backpropagation méglich

Einordnung
o Gesamtiiberblick der Modellarchitekturen: Einordnung verschiedener Familien und Trade-offs.
o Wichtige Achsen: Kontextlange, Compute pro Token, Trainingsobjective, Einsatzgebiet.
o Vorbereitung fiir den Ausblick auf Titans/Memory-Konzepte.

40

Was fehlt in dem Rechenbeispiel?

Tokenization ~ /|

Embedding 9 &

Self-Attention) /|

Feedforward-Block (MLP mit GeLU) X {weggelassen fiir Einfachheit) |

Residual Connections ¥ /|

LayerNorm X
Einordnung

o Titans als Ausblick: Erweiterung klassischer Transformer um explizite Memory-Mechanismen.
e Motivation: Grenzen durch Kontextfenster, Langzeitkonsistenz und effiziente Speicherung von Wis-
sen.

o ,Memory* als zusitzliche Komponente neben Parametern und Kontext (Prompt).

41

Was im Rechenbeispiel vereinfacht wurde

Vergleich: Rechenbeispiel vs. GPT/BERT

Baustein Beispiel GPT/BERT
Tokenisierung ™ =
Embedding /] v
Self-Attention (]]
Feedforward {MLP) H (weggelassen, z. B. GeLU-Aktivierung) 2
Residuals X [
LayerNorm X (v

Warum diese Vereinfachung?
- Fokus auf Kernprinzip Attention + Gradienten
- Komplexitdt reduziert flir besseres Verstandnis

Einordnung
e Short-Term vs. Long-Term Memory: kurzfristige Kontextverarbeitung vs. langerfristige Speiche-
rung/Abfrage.
o Ziel: relevante Informationen selektiv behalten (komprimieren) statt alles im Kontext zu halten.

o Parallele zu RAG: Auch dort wird Wissen extern gehalten, aber mit anderen Mechanismen/Trade-
offs.

42

Wo arbeiten LLMs mit Tensoren?

e)

Eingabevektor (Token) 1 [1,2,1,0]
Gewichtsmatrizen (W, Wy, W) 2 [4 x 4]
Attention-Scores 1 Score-Liste
Attention-Output-Vektor 1 [0.304, 0.529, 0.603, 0.399]
Multi-Head Attention (echte LLMs) 4 (Batch, Heads, Seq, Seq)
Komplette Modell-Batches 3 (Batch, Sequence, Hidden) - z.B. (32, 128,
768)
Einordnung

o Persistent Memory: Informationen werden tiber Sessions/Anfragen hinweg gespeichert und wieder-
verwendet.
e Nutzen: Personalisierung, langfristige Aufgabenverfolgung, konsistente Wissensbasis.

o Herausforderung: Aktualisierung, Vergessen, Datenschutz und Kontrolle tiber gespeicherte Inhalte.

43

1.8 Ausblick: Titans

Ausblick: Titans-Architektur
Ein Ausblick auf neue Architekturen

Titans (Modellarchitektur)

Woeiterentwicklung klassischer Transformer-Architekturen
Alternative Blockdesigns: Attention + MLP + Gating

Verbesserte Positionsembeddings (Rotary, State-Space Embeddings)
Bessere Parallelisierung, langere Kontexte

Genutzt in Gemini 1.5, Gemini Ultra (Google DeepMind)

Titans (Hardware / TPU v5p)

Spezialhardware fiir LLM-Training

Optimiert fir massive Matrixoperationen (MatMul, Attention)
Tausende TPUs pro Cluster (TPU v5p Pod)

Erméglicht Training von Multi-Billionen-Parameter-Modellen

Grundprinzip bleibt:
Tensoroperationen, Softmax, Cross-Entropy, Gradientenabstieg

Alle Prinzipien bleiben gleich nur die Skala wachst auf Milliarden
Rechenoperationen und Billionen Parameter

Surprise sagt dem System: "Das war neu oder unerwartet™:

,Ich habe meine Rechnung verloren, kénnen Sie mir helfen?”

— Das Modell erkennt eine neue Bedeutungskombination ,Rechnung
verloren” = hoch Uberraschend, da selten gesehen.

- Uberraschung - wird gespeichert (Surprise Memary)

Long-Term Memory speichert diesen Uberraschungszustand langer,
weil es haufig auftritt. Modell liest oft und speichert es:

— ,Bitte schicken Sie mir eine Kopie der letzten Rechnung.”

— ,Ich habe meine letzte Rechnung nicht erhalten.”

- Kénnte ich eine Rechnung erneut bekommen?”

Adaptive Forgetting entfernt alte oder irrelevante Informationen
automatisch.

Eine alte Regel, dass ,Rechnung” haufig im Vertriebskontext
vorkammt, wird weniger wichtig, weil die neue Kundensupport-
Bedeutung hiufiger genutzt wird.

- Diese alte Info wird aus dem aktiven Gedéchtnis verdrangt.

Momentum sorgt dafir, dass das Memory weich und stabil angepasst
wird.

Persistent Memory speichert dauerhaft aufgabenibergreifendes
Wissen.

LRechnung verloren” gehért oft zu Anfragen wie Kopie zusenden,
Kundenservice, PDF bereitstellen:

—» Diese Assoziation wird dauerhaft im Aufgabenwissen gespeichert

Einordnung

o Hinweis: Titans ist ein aktueller Ansatz. Die Details konnen sich noch andern.

e Zusammenfassung Titans: Memory als dritte Sdule neben Parametern und Prompt-Kontext.

o Einordnung: unterschiedliche Speicherarten 16sen unterschiedliche Probleme (Kontextlinge vs. Lang-

zeitkonsistenz).

e Ausblick: Kombinationen aus RAG, Caching und Memory-Architekturen in modernen Systemen.

44

Titans — Architekturvergleich

Komponente Beispiel GPT/BERT Titans

Tokenization ™] v

Embedding |] EZ (SSM State Space Pasition Encoding)
Self-Attention] v (2 (verbessert: : multi-query, Gating, 55SM)
Feedforward (MLP) X [(GeLU) L (Gating)

Residuals/LayerNorm X V] |

Gating X ¥ /]

PositionEmbedding implizit L (rotary) £ (Rotary, 5SM)

Gating: funktioniert wie ein neuronaler Schalter, der entscheidet, ob Informationen im Metzwerk weitergegeben oder unterdriickt
werden.

MLP {Multilayer Perceptron): vallstindig verbundene neuronale Netze, die nach der Attention-Schicht folgen und die Informationen
weiterverarheiten, In GPT kommt z. B. eine Aktivierungsfunktion wie Gelll zum Einsatz,

Mach der Attention folgt bei GPT ein sogenannter Feedforward-Block, auch MLP genannt, ein mehrschichtiges neuronales Metz, das die
herechneten Token-Vektoren weiter transformiert, Titans verwenden hier zusitzlich ein Gating, also eine Art Filtermechanismus,

Einordnung

o Grenzen von LLMs: Halluzinationen, begrenztes Kontextfenster, Kosten (Compute/Token).
e Sicherheits- und Qualitdtsaspekte: Prompt Injection, Datenleaks, Bias und fehlende Garantien.
e Konsequenz flir Praxis: Evaluierung, Quellen, Guardrails und human-in-the-loop bei kritischen An-

wendungen.

45

Titans Memory Architektur

Titans: Erweiterung klassischer Transformer mit Memory-Komponenten

Neue Gedachtnisarchitektur in Titans

Kombiniert klassische Attention mit zusatzlichen Speichersystemen:
= Short-Term Memory (klassische Attention)

Berechnet wie im Transformer Q, K, ¥ und Softmax

Verarbeitet lokalen Kontext innerhalb der Sequenz

- Neural Long-Term Memory (Surprise Memory)
Speichert nur "lberraschende" Informationen

Uberraschung wird aus dem Gradienten berechnet
{hohere Uberraschung > Speicherung)

Wergleichbar mit menschlichem selektivem Lernen

= Persistent Memory (Aufgabenwissen)
Langfristig trainierte Zusatzreprisentation
Wird am Anfang jeder Eingabe bereitgestellt Hauptmerkmale:
Dient als konstanter Aufgaben-Kontext ey

- Adaptive Forgetting
Gating-Mechanismus steuert gezieltes Vergessen von unwichtigen Informationen

Warum Titans?

Skalierbar auf extrem lange Kontexte (> 2 Mio Tokens)

Stahileres und selektiveres Lernen

Besser fur komplexe Aufgaben mit vielen Zwischenzustdnden (Planung, Reasoning, Retrieval)

* Disrenziarbarss exlemes Godachinis
« Content-ased addressing mit Afiention

Titans Memory Architecture

£

: External Memory
1 Matrix M & RM{NxD)
{I H memory slots
I

Transformer

D-dmensional vactorns

Mefmory Controll
L+ ReadWitite Operatians
,+° Atlention Weights
:_ + Content-based Addressing

Transformer
Decoder

Viorteile:

* Bassare: Langzsil-ALhangigheilan
* Skaberkace Gedichiniskapazitat
* End-to-End trainkerbar

+ External Memary Module: Das Zentrum der
Innavation

* Memaory Controller: Steuert alle
Gedachtnisoperationen

= Read Head: Fragt das Gedachtnis ab

* Write Head: Aktualisiert das Gedachtnis

46

1.9 Grenzen des klassischen Language Modells

Grenzen von klassischen Language
Modells

Diese bekannten Schwéchen gelten auch fir GPT-Modelle wie ChatGPT:

. Halluzinationen: .

Generierung von falschen Inhalten mit hoher Uberzeugungskraft: Modell bestatigt von sich (iberzeugt die eigenen Fehler.
. Wissensgrenze:

Modelle kennen keine Ereignisse nach dem Trainingszeitpunkt.
. Fehlende Quellenangaben:

Keine direkten oder Uberpriifbaren Zitate verfiigbar.

. Datenschutz & Zugriff:
Kein Zugang zu privaten Daten oder proprietdren Informationen.

. Begrenzte Kontextlinge:
Nur eine begrenzte Anzahl an Tokens kann gleichzeitig verarbeitet werden.
. Vergessen von Informationen:
. Modell hat ein Problem, sich Uber lange Zeitraume Informationen zu merken.
. Kosten: Hohe Kosten fiir das Generieren langer Texte: Quadratische Abhingigkeit

der Rechenzeit und des Speichers von der Sequenzlange ist der Hauptgrund fiir
die Begrenzung der Kontextlénge.

. GPT versteht tiberhaupt nichts, es kann nur sehr gut Wahrscheinlichkeiten modellieren.

. GPT hat keine Gefiihle oder Intentionen, es berechnet nur die wahrscheinlichste Wortfolge.
GPT scheitert bei:

. Logikrétsel

. Rechenaufgaben mit langen Ketten

. Fakten nach dem Trainingszeitpunkt

47

1.10 Fazit und Diskussion

Fazit & Diskussion

Kernerkenntnisse:

- LLMs sind probabilistische Modelle, die statistische Muster in Texten lernen; kein symbolisches "Verstehen" im menschlichen Sinne
- Self-Attention ermdglicht kontextabhangige Bedeutungsreprisentation durch lernbare Gewichtungen

- Training erfolgt durch Next-Token-Prediction mit Backpropagation; Inferenz ist reine Vorwéartsrechnung ohne Lernen

- RAG und Memory-Architekturen erweitern die Fihigkeiten ohne Retraining

Was LLMs kénnen:

- Sprachliche Muster erkennen und reproduzieren

- Kontextabhangige Texte generieren

- Als Schlussfolgerungsmodul mit externem Wissen (RAG) arbeiten

Was LLMs nicht kdnnen:

- Faktische Korrektheit garantieren

- Uber den Trainingszeitpunkt hinaus aktuelles Wissen haben
- Logisch-kausales Schlussfolgern zuverlassig durchfiihren

Offene Fragen und Ausblick:

- Wie lassen sich Halluzinationen systematisch reduzieren?

- Kénnen Memary-Architekturen (Titans) die Kontextgrenzen Uberwinden?
- Welche Rolle spielen LLMs in einer hybriden KI-Architektur?

Implikationen fiir die Praxis:

- Kritische Prifung von LLM-Ausgaben bleibt unerlasslich

- RAG als pragmatischer Weg fur doméanenspezifisches Wissen
- Human-in-the-Loop bei sicherheitskritischen Anwendungen

48

1.11 Glossar

ich?)

Gl ichtiger Begriff
Adaptive Forgetting B
a Produit aus Spalten- und Zellenvektor: ergibt eine Matrix wichtig fir Gradlenten wie aL/gW,
Auflores Proult In30: Vektorprodukt (Kreuzprodukt)
Backpropagation i g ehlers zur i
Cross-Entropy Loss. den Fehler der
Decoder-onty der nur artsri [2.B.GPT}
Embedding Umwandlungvon Tokens in Vektoren
Encoder-Decoder Twei furz. B, {z.B. TS, BART)
Encooder-anly ypmit vollem {z. B, BERT}
Feedforward (MLP) i Token nach & i
Gating M zur selektiven Si i
Gradientenabstieg g Zur isen Fi i
Head Etn einzeiner Autmerksamkeltsmechanismus, der Query, Key und Value verarbeltet
Jacobi-Matrix Sensitivitat der Ausgaben auf die Eingaben
LayerNorm Normierung der Zwischenausgaben
" i it fiir die Vior 2 Tokens
Liketihood gegeben den bisherigen Kontext. Das Modell imiert diese itim Training
Logits (z) Rohwerte vor der Softmax-Mormalisierung
Matrix 2.dimensi z (2.B. Gewi oder i izen)
Mixture of Experts {MoE) Dynamische Auswahlvon Modellkomponenten
Multi-Head Attention Parallele & g mehrerer unter
Neural Long-Term Memaory i U
Persistent Memory L 5
Positional Encoding Pasitlonsinformation fir der Tokens
y | Gradient) Fehlermal zwischen Vorhersage und Ziel
Q. K,V {Query. Key, Value) r F die
Query{Q) d Tokens, das aus anderen Tokens anfordert |"Wen schaue ich an?)
Key{K) ler Tokens, die werden kbnnen ["Wer bietet sich an?)
Value (V) Inhaitliche Informationen der Tokens, die i liefern |"Welche
: aus {LLM) und D uf:
RAG (Retrieval-
4 Vor der Antwort werden D oder Fakten ausz. B, D:
Agimented Genciafion) oder Eeholt und in das Modell ei
Residual Connection Hinzufigen der Ei zur i
Schwellenwert Wert, abdem eine wird (z, B. Alktivi ion. binare
Self-Attention Tokens
Skalarprodukt Multiplikation zweier Vektaren mit Ausgabe eines Skalars (z. 8. Ahnlichkeitsmag)
Softmax Scores InWahr
S5M [State Space Model) Hiir P Ei ngin Gemin
Surprise Memary Memoary-Komponente, die seltene oder Gberraschende Muster speichert
Tensor r i i van Vektaren und Matrizen
Titans Architektur i mit Gating & Memary
Token Kleinste Einheit des Inputs (2. B. Wort, Subwort, Zeichen)
Tokenization Zerlegung des Textes in Tokens
TPU (Tenser ing Unit) ialisi Hardware fiir LLM-Training
Vektor Zahlenliste zur Darstellungvon Tokens

Titans Memary

Gradient-Updates

Tra

Ti i GPT. Vorhersage 3 Tokens
Eingabeschicht

Klassifikation, Masked Language z.B. BERT), Ei

L Z Aulgaben mit Eingabe und Ausgabe
GPT/BERT Architektur

Titans Feedforward

Training. Update-Regel

won Multi-Head Attenti
{kurz bei Softmax-Ableitung)
GPT/BERT Architektur

Cross-Entropy, Training, Softmax-Ausgabe

Vior Softmax

Gewil i 1 i ing
{micht im Vortrag, nur am Rande in Titans moglich)
Attention-Formeln, i inLLMs: Titans
Titans Memory

Titans Memaory

Eingabeschicht Attention

Gradient, Backpropagation

Attention-Formeln

Attention-Formeln, Frage

Attention-Formeln, Angebot
Attention-Formeln, Infermation

LLM und Wissen

GPT/BERT Architektur

Hauptblock Attention
Artention-Berachnung Ahnlichieit
Attention, Output Layer

Titans Position-Encoding
Titans-Architektur

Ausblick
Tokenisierung, Eingabe
Vorverarbeitung
Titans Hardware
Embedding, Attention

49

1.12 Literaturverzeichnis

Alammar, J. & Grootendorst, M. (2024). Hands-On Large Language Models: Language Understanding and Generation.
Sebastopol, CA: O’Reilly Media.

1.12.1 Begleitmaterial

Kefler, K. (2025). LLM fir den Hausgebrauch — Notebooks und Materialien.
GitHub: https://github.com/karkessler /llm-hausgebrauch
DOI: https://doi.org/10.5281/zenodo.18293327

20

https://github.com/karkessler/llm-hausgebrauch
https://doi.org/10.5281/zenodo.18293327

	Zusammenfassung
	LLM für den Hausgebrauch
	Motivation
	Transformer
	Mathematische Grundlagen
	Ein Rechenbeispiel
	Lernprozess und Backpropagation
	Wie entsteht das Modell?
	Modellarchitektur
	Ausblick: Titans
	Grenzen des klassischen Language Modells
	Fazit und Diskussion
	Glossar
	Literaturverzeichnis

