
LLM für den Hausgebrauch

Karsten Keßler

Version 1.0, 19.01.2026

Inhaltsverzeichnis
Zusammenfassung . 1

1 LLM für den Hausgebrauch 1
1.1 Motivation . 4
1.2 Transformer . 6
1.3 Mathematische Grundlagen . 7
1.4 Ein Rechenbeispiel . 17
1.5 Lernprozess und Backpropagation . 26
1.6 Wie entsteht das Modell? . 29
1.7 Modellarchitektur . 38
1.8 Ausblick: Titans . 44
1.9 Grenzen des klassischen Language Modells . 47
1.10 Fazit und Diskussion . 48
1.11 Glossar . 49
1.12 Literaturverzeichnis . 50

Zusammenfassung

Dieses Dokument bietet eine technische Einführung in Large Language Models (LLMs) für Studierende und Prakti-
ker:innen mit Programmiererfahrung. Im Fokus steht das Verständnis der zugrundeliegenden Mechanismen - von der
Tokenisierung über Self-Attention bis zur Backpropagation.

Anders als produktfokussierte Tutorials behandelt dieses Material die mathematischen Grundlagen auf einem Niveau,
das Intuition und Rechenfähigkeit verbindet. Begleitende Jupyter-Notebooks ermöglichen das praktische Nachvollzie-
hen aller Konzepte.

Umfang: 49 Seiten | 8 interaktive Notebooks | Glossar mit 40+ Begriffen
Lizenz: CC BY-NC-SA 4.0

1 LLM für den Hausgebrauch

Inhaltlich führt dieses Dokument Schritt durch die wichtigsten Bausteine moderner Large Language Models (LLMs):
von der historischen Entwicklung der KI (Symbolic AI → Machine Learning → Deep Learning → LLMs) über das
Trainingsprinzip Self-Supervised Learning (Next-Token-Prediction) bis zur grundlegenden Verarbeitungskette im
Modell (Tokenisierung → Embeddings → Transformer/Self-Attention → Logits/Softmax → Loss →

1

Backpropagation). Ein Schwerpunkt liegt auf der Intuition hinter Self-Attention (Query/Key/Value, Attention-
Gewichte, Kontextvektoren) und darauf, wie daraus kontextabhängige Bedeutungen entstehen.

Darüber hinaus behandelt die Präsentation wichtige Systemaspekte jenseits des reinen Modells: Vektor-
Datenbanken als semantischer Wissensindex, Retrieval Augmented Generation (RAG) als Kombination aus
Retrieval und Generierung sowie (als Ausblick) Memory-Konzepte wie bei Titans. Abschließend werden typische
Grenzen und Risiken von LLMs eingeordnet, u.a. Halluzinationen, begrenzte Kontextfenster, Kosten/Compute
und Aspekte wie Robustheit und Sicherheit.

Zielgruppe: Das Material richtet sich an Studierende sowie technisch interessierte Praktiker:innen, die LLMs nicht
nur „benutzen“, sondern die zentralen Konzepte und den Rechenweg dahinter verstehen möchten (Produkt- oder
Toolkenntnisse sind nicht erforderlich).

Voraussetzungen: Erwartet werden grundlegende Programmiererfahrung (z.B. in Python) und ein Basisverständnis
von Mathematik für Machine Learning (Vektoren/Matrizen, einfache Funktionen/Gradienten). Details zu Ableitungen,
Softmax/Cross-Entropy oder Rechenbeispielen werden im Dokument schrittweise aufgebaut; tiefe Vorkenntnisse in
Deep Learning oder Transformer-Architekturen sind nicht notwendig.

Wo es passt, sind zusätzlich Links zu Python-Notebooks angegeben, mit denen sich zentrale Konzepte prak-
tisch nachvollziehen lassen (z.B. mathematische Grundlagen, Tokenisierung, Attention-Rechenbeispiele, Next-Token-
Prediction oder semantische Suche). Dadurch eignet sich das Dokument sowohl als Begleitmaterial zur Präsentation
als auch als Nachschlagewerk zum Wiederholen und Vertiefen.

2

Einordnung
• Überblick über den roten Faden: Von Motivation und Begriffen bis zu Grenzen und Ausblick.
• Erwartungsmanagement: Fokus auf Grundprinzipien (Transformer, Training, Tokenisierung), nicht

auf Produktmarketing.
• Orientierung für die folgenden Kapitel und Demos: Welche Folien sind konzeptionell, welche rechne-

risch.

3

1.1 Motivation

Einordnung
• Historische Entwicklung der KI: Symbolic AI → Machine Learning → Deep Learning → LLMs.
• Verschiebung von handcodierten Regeln zu datengetriebenen Repräsentationen (Features/Embeddings).
• Einordnung von GPT in die DL-/NLP-Landschaft: Transformer als Architektur, Decoder-only als

Modellfamilie.

4

Einordnung
• Self-Supervised Learning: Next-Token-Prediction als Trainingsziel (Labels entstehen aus dem Text

selbst).
• Abgrenzung zu Supervised, Unsupervised (Clustering/Embeddings) und RL/RLHF als Feintuning-

Schritt.
• Intuition: Modelle lernen statistische Regularitäten und Weltwissen indirekt über Textzusammenhän-

ge.
• Beispiel: Paris → Frankreich als Illustration für Kontextnutzung und semantische Assoziation.

5

1.2 Transformer

Einordnung
• Gesamtpipeline: Text → Tokenisierung → Embedding → (mehrfach) Self-Attention/FFN → Output-

Logits → Softmax → Loss → Backpropagation.
• Trennung von Vorwärtsrechnung (Inference) und Training (zusätzlich Loss & Gradienten).
• Decoder-only (GPT) für Generierung, Encoder-only (BERT) für Verständnis/Maskierung, Encoder-

Decoder (T5/BART) für Sequenz-zu-Sequenz.

6

1.3 Mathematische Grundlagen

Einordnung
• Optimierung neuronaler Netze: Kettenregel, Gradient Descent, Interpretation der Loss-Landschaft.
• Rolle der Lernrate: Stabilität vs. Geschwindigkeit (Overshooting vs. langsame Konvergenz).
• Lokale Minima, Sattelpunkte und warum große Netze oft trotzdem gut trainierbar sind (Intuition).

Notebooks
• Open in Colab: Mathematische Grundlagen (https://colab.research.google.com/github/karkessler/ll

m-hausgebrauch/blob/main/notebooks/kapitel_3_mathematische_grundlagen.ipynb)

7

https://colab.research.google.com/github/karkessler/llm-hausgebrauch/blob/main/notebooks/kapitel_3_mathematische_grundlagen.ipynb
https://colab.research.google.com/github/karkessler/llm-hausgebrauch/blob/main/notebooks/kapitel_3_mathematische_grundlagen.ipynb

Einordnung
• Matrixrechnung als Grundbaustein: Lineare Projektionen transformieren Vektoren in neue Repräsen-

tationsräume.
• 𝑧 = 𝑊 ⋅ 𝑥: Dimensionalitäten erklären (Eingabevektor, Gewichtsmatrix, Ausgabedimension).
• Verbindung zu Transformer: 𝑊𝑄, 𝑊𝐾, 𝑊𝑉 und weitere Projektionsmatrizen sind genau solche linearen

Abbildungen.
• Interpretation: Gewichte kodieren gelernte Muster; Multiplikation ist „Feature-Mischung“/Aggregation.

8

Einordnung
• Von Logits zu Softmax: Das Modell liefert zunächst unnormierte Scores (Logits) pro Token.
• Softmax macht daraus eine Wahrscheinlichkeitsverteilung über das Vokabular: 𝑝(next token ∣

Kontext).
• Numerische Stabilität: Softmax wird praktisch stabil gerechnet (z.B. LogSumExp-Trick).
• Vorbereitung für Training: Cross-Entropy vergleicht die Verteilung mit dem Ziel-Token.

9

Einordnung
• Vektor-Datenbanken speichern keine Wörter, sondern Embeddings von Textpassagen (Chunks).
• Suche erfolgt semantisch: Ähnliche Bedeutung ⇒ ähnliche Vektoren (Nearest Neighbor).
• Ergebnis ist Kontextmaterial, das ein LLM zur Antwortgenerierung nutzen kann (statt reines Par-

amterwissen).

Beispiel:
„Paris ist die Hauptstadt von Frankreich.” Die KI sucht nicht nach dem Wort „Paris”,
sondern nach Texten mit gleicher Bedeutung.

Hinweis

• Die Vektor-Datenbank ist ein semantisch durchsuchbarer Wissensindex.

10

Einordnung

• Brücke zwischen Vektor-Datenbank und RAG-Pipeline: Das Modell bleibt gleich, nur der Kontext
wird ergänzt.

• Retrieval liefert passende Textpassagen; das LLM nutzt sie zur Antwort – ohne Retraining.
• Merksatz: RAG erweitert das Wissen „zur Laufzeit“ (über Prompt-Kontext), nicht über neue Ge-

wichte.

Statt

𝑝(Token𝑡+1 ∣ Frage)
rechnet das Modell nun:

𝑝(Token𝑡+1 ∣ Frage + relevanter Kontext)
Der entscheidende Punkt:
Der Kontext stammt aus einer semantischen Suche in einer Vektor-Datenbank. Der relevante Kontext
ist nicht zufällig gewählt, sondern wird über eine semantische Ähnlichkeitssuche (Embeddings, Nearest

11

Neighbor) aus einer Vektor-Datenbank abgerufen.

Dadurch wird die Wahrscheinlichkeitsverteilung der nächsten Tokens stark auf faktisch passende Fortset-
zungen eingeschränkt.

12

Einordnung
• RAG kombiniert Retrieval (Kontextbeschaffung) und Generation (Antwortformulierung).
• Ablauf: Frage → Embedding → semantische Suche → relevante Passagen → Prompt mit Kontext →

LLM-Antwort.
• Vorteil: Aktualisierbares Wissen ohne Modell-Retraining; Quellen können zitiert/überprüft werden.
• Rollen: Vektor-DB als Wissensindex, LLM als Sprach- und Schlussfolgerungsmodul (auf Basis des

Kontexts).

13

Einordnung
• Demonstriert den Retrieval-Schritt von RAG in einer echten Vektor-DB (Qdrant, Local Mode).
• Pipeline: Dokumente chunking → Embeddings → Index; Anfrage → Query-Embedding → Similarity

Search.
• Wichtig: Gespeichert werden Textpassagen (mit Metadaten), nicht Stichwortlisten.
• Ergebnisinterpretation: Trefferqualität hängt von Chunking-Strategie und Embedding-Modell ab.

Notebooks
• Open in Colab: Qdrant Demo (https://colab.research.google.com/github/karkessler/llm-hausgebr

auch/blob/main/notebooks/qdrant_demo.ipynb)

14

https://colab.research.google.com/github/karkessler/llm-hausgebrauch/blob/main/notebooks/qdrant_demo.ipynb
https://colab.research.google.com/github/karkessler/llm-hausgebrauch/blob/main/notebooks/qdrant_demo.ipynb

Einordnung
• Sprache wird als Token-Sequenz modelliert (diskrete Einheiten statt „ganze Sätze“).
• Token können Wörter, Subwords oder Zeichen/Sonderzeichen sein (abhängig vom Tokenizer).
• Tokenisierung legt fest, welche Muster das Modell überhaupt unterscheiden/lernen kann (OOV, Kom-

pression, Mehrdeutigkeit).
• Praktische Konsequenz: Prompt-Design und Kosten hängen stark an der Tokenanzahl.

Notebooks
• Open in Colab: Tokenisierung (https://colab.research.google.com/github/karkessler/llm-hausgebr

auch/blob/main/notebooks/tokenisierung_beispiel.ipynb)

15

https://colab.research.google.com/github/karkessler/llm-hausgebrauch/blob/main/notebooks/tokenisierung_beispiel.ipynb
https://colab.research.google.com/github/karkessler/llm-hausgebrauch/blob/main/notebooks/tokenisierung_beispiel.ipynb

Einordnung
• Tokenisierung bestimmt die „Auflösung“ der Texteingabe: Granularität von Einheiten im Embedding-

Raum.
• Auswirkungen: OOV-Handling, Robustheit bei seltenen Wörtern, Umgang mit Komposita (Deutsch)

und Tippfehlern.
• Modellqualität hängt auch vom Tokenizer ab (z.B. Vokabulargröße vs. Sequenzlänge).
• Verweis auf Zusatzmaterial für Details und Beispiele.

16

1.4 Ein Rechenbeispiel

Einordnung
• Ausgangspunkt: Tokens sind bereits in Embeddings überführt; das Modell verarbeitet alle Tokens

parallel.
• Self-Attention berechnet für jedes Token eine gewichtete Mischung der anderen Tokens (Kontextag-

gregation).
• Ergebnis: Kontextabhängige Bedeutung (z.B. „von“ als Relation, nicht isoliertes Wort).
• Intuition: Statt fester Regeln werden Relevanzen aus Daten gelernt (Gewichtungen als „weiche Re-

geln“).

17

Einordnung
• Wort-Embeddings kodieren Bedeutung in kontinuierlichen Vektorräumen (Distributional Semantics).
• Nähe im Raum korreliert mit semantischer Ähnlichkeit; Richtungen können Relationen ausdrücken

(Analogien).
• Embeddings sind die Schnittstelle zwischen diskreten Tokens und differentiellen neuronalen Netzen.

18

Einordnung
• Self-Attention macht Embeddings kontextabhängig: gleiche Token-ID kann je nach Satz verschiedene

Vektoren erhalten.
• Das reduziert Mehrdeutigkeit (Polysemie) und kodiert syntaktische/semantische Rollen.
• Beispiel: „von“ wird zur Relation zwischen „Hauptstadt“ und „Frankreich“ statt eigenständigem

Inhalt.

19

Einordnung
• Q, K, V sind lineare Projektionen der Token-Embeddings und definieren die Attention-Berechnung.
• Query: „Worauf soll ich achten?“ Key: „Was biete ich an?“ Value: „Welche Information liefere ich?“
• Attention-Gewichte entstehen aus Query-Key-Ähnlichkeiten; Values werden entsprechend gemischt.
• Multi-Head Attention: mehrere parallele Sichtweisen auf Kontext (verschiedene Projektionen).

20

Einordnung
• Score-Berechnung als skaliertes Skalarprodukt: Score𝑖,𝑗 = 𝑄𝑖⋅𝐾𝑗√𝑑𝑘 .
• Skalierung mit √𝑑𝑘 stabilisiert Wertebereiche und Gradienten bei größeren Dimensionen.
• Softmax über Scores liefert Attention-Gewichte (Summe = 1), interpretierbar als Relevanzen.
• Kontextvektor entsteht als gewichtete Summe der Value-Vektoren.

21

Einordnung
• Ergebnis der Attention: neuer Vektor pro Token, der Bedeutung im Satzkontext kodiert.
• Damit kann das Modell Relationen (Subjekt/Objekt, „von“-Beziehungen, Referenzen) rechnerisch

abbilden.
• Wichtig: „Verstehen“ im Transformer ist Ergebnis von Matrixoperationen, nicht symbolischer Regeln.

Notebooks
• Open in Colab: Attention Rechnung (https://colab.research.google.com/github/karkessler/llm-

hausgebrauch/blob/main/notebooks/attention_rechenbeispiel.ipynb)

22

https://colab.research.google.com/github/karkessler/llm-hausgebrauch/blob/main/notebooks/attention_rechenbeispiel.ipynb
https://colab.research.google.com/github/karkessler/llm-hausgebrauch/blob/main/notebooks/attention_rechenbeispiel.ipynb

Einordnung
• Next-Token-Prediction: Aus dem Kontextvektor wird über eine lineare Projektion ein Logit pro Vo-

kabel berechnet.
• Softmax macht daraus Wahrscheinlichkeiten; Sampling/Decoding bestimmt das tatsächlich generierte

Token.
• Training treibt die richtigen Tokens hoch, indem die Loss (Cross-Entropy) minimiert wird.

23

Einordnung
• Mini-Vokabular macht Softmax konkret: Logits werden exponentiert und normiert.
• Kleine Logit-Änderungen können Wahrscheinlichkeiten stark verändern (Sensitivity).
• Decoding-Strategien (Greedy, Temperature, Top-k/Top-p) steuern Vielfalt und Determinismus.

Notebooks
• Open in Colab: Next Token Vorhersage 1 (https://colab.research.google.com/github/karkessler/llm-

hausgebrauch/blob/main/notebooks/next_token.ipynb)
• Open in Colab: Next Token Vorhersage 2 (https://colab.research.google.com/github/karkessler/llm-

hausgebrauch/blob/main/notebooks/next_token_prediction_toy.ipynb)

Hinweis

• LLMs wählen das wahrscheinlichste nächste Token, nicht „die Wahrheit”.

24

https://colab.research.google.com/github/karkessler/llm-hausgebrauch/blob/main/notebooks/next_token.ipynb
https://colab.research.google.com/github/karkessler/llm-hausgebrauch/blob/main/notebooks/next_token.ipynb
https://colab.research.google.com/github/karkessler/llm-hausgebrauch/blob/main/notebooks/next_token_prediction_toy.ipynb
https://colab.research.google.com/github/karkessler/llm-hausgebrauch/blob/main/notebooks/next_token_prediction_toy.ipynb

Einordnung
• Attention-Gewichte sind eine Verteilung darüber, wie stark ein Token andere Tokens berücksichtigt.
• Visualisierung hilft, syntaktische/semantische Bezüge zu sehen (z.B. Subjekt-Verb, Referenzen).
• Wichtig: Hohe Gewichte bedeuten Relevanz im Modell, aber nicht zwingend „Erklärbarkeit“ im

menschlichen Sinn.

25

1.5 Lernprozess und Backpropagation

Einordnung
• Kontextvektor ist die gewichtete Summe der Values: Information wird „eingesammelt“ und verdichtet.
• Ergebnis pro Token kann als „kontextualisiertes Embedding“ verstanden werden.
• Dieser Schritt passiert pro Layer mehrfach und baut schrittweise abstraktere Repräsentationen.

26

Einordnung
• Vollständiges Rechenbeispiel verbindet: Projektionen 𝑄, 𝐾, 𝑉 → Scores → Softmax → Kontextvektor.
• Zeigt konkret, wo Multiplikationen, Normalisierung und Summen im Transformer auftreten.
• Gute Stelle, um Dimensionsprüfung und Intuition („woher kommt welche Information?“) zu üben.

27

Einordnung
• Zusammenfassung der Attention-Schritte als wiederverwendbares „Rezept“.
• Betonung der Kernidee: Relevanzgewichtung statt fester Regeln.
• Brücke zu Multi-Head/mehrere Layer: derselbe Mechanismus wird wiederholt und kombiniert.

28

1.6 Wie entsteht das Modell?

Einordnung
• Softmax erzeugt Wahrscheinlichkeiten; Cross-Entropy misst, wie gut die Verteilung zum Ziel-Token

passt.
• Backpropagation liefert Gradienten für alle Gewichte (inkl. Projektionen in Attention und Output-

Layer).
• Training ist systematisches Anpassen der Gewichte, um die Loss über viele Beispiele zu senken.

29

Einordnung
• Lernprozess als Klassifikation: Nächstes Token ist eine Klasse im Vokabular.
• Ziel ist nicht „Wahrheit“, sondern möglichst hohe Wahrscheinlichkeit für das korrekte Fortsetzungs-

token im Trainingskorpus.
• Verbindet probabilistische Sicht (Verteilungen) mit Optimierung (Loss-Minimierung).

30

Einordnung
• Vertiefung: Iteratives Update der Gewichte über viele Schritte und Mini-Batches.
• Unterschied Train/Inference: During training wird das korrekte Token „vorgegeben“ (Teacher For-

cing).
• Generalisierung: Modell lernt Muster, die auf neue Texte übertragen werden sollen.

Notebooks
• Open in Colab: Gradientenabstieg Iteration (https://colab.research.google.com/github/karkessler/ll

m-hausgebrauch/blob/main/notebooks/gradient_descent_wq_diagonal.ipynb)

31

https://colab.research.google.com/github/karkessler/llm-hausgebrauch/blob/main/notebooks/gradient_descent_wq_diagonal.ipynb
https://colab.research.google.com/github/karkessler/llm-hausgebrauch/blob/main/notebooks/gradient_descent_wq_diagonal.ipynb

Einordnung
• Weitere Aspekte des Lernprozesses: Regularisierung, Overfitting, Trainingsdatenqualität.
• Praktische Stellschrauben: Batchgröße, Learning-Rate-Schedule, Weight Decay.
• Intuition: Gute Performance entsteht aus Daten, Architektur und Training zusammen (nicht nur

„mehr Parameter“).

32

Einordnung
• Zusammenfassung: Optimierung minimiert Loss; Gradienten sagen, wie Parameter angepasst werden.
• Blick auf die Praxis: Pretraining vs. Finetuning und warum Datenmengen entscheidend sind.
• Übergang zu Architekturfragen: Was genau wird in welchen Schichten gelernt?

33

Einordnung
• Gesamtüberblick verbindet: Tokenisierung → Repräsentationen → Attention → Output → Loss →

Update.
• Nützlich als mentale Landkarte: Wo greifen Demos/Rechenbeispiele in die Pipeline ein?
• Vorbereitung für Modellvergleich und Bausteine des Transformers (Residuals, LayerNorm, FFN).

34

Einordnung
• Softmax & Cross-Entropy als zentrales Duo: Wahrscheinlichkeiten erzeugen und Fehler messen.
• Interpretation: Cross-Entropy bestraft „selbstsichere“ falsche Vorhersagen besonders stark.
• Verbindet mathematische Formel mit praktischem Training: Loss dient als Optimierungsziel.

Notebooks
• Open in Colab: Softmax & Cross-Entropy (https://colab.research.google.com/github/karkessler/llm-

hausgebrauch/blob/main/notebooks/decoder_softmax_crossentropy_wout.ipynb)

35

https://colab.research.google.com/github/karkessler/llm-hausgebrauch/blob/main/notebooks/decoder_softmax_crossentropy_wout.ipynb
https://colab.research.google.com/github/karkessler/llm-hausgebrauch/blob/main/notebooks/decoder_softmax_crossentropy_wout.ipynb

Einordnung
• Vergleich GPT vs. BERT: Decoder-only generiert autoregressiv, Encoder-only lernt bidirektionale

Repräsentationen.
• Unterschiedliche Pretraining-Objectives (Causal LM vs. Masked LM) führen zu unterschiedlichen

Stärken.
• Praktische Konsequenz: Wahl der Architektur hängt von Aufgabe ab (Generierung vs. Klassifikati-

on/Extraktion).

36

Einordnung
• Feed-Forward-Netz (FFN) erweitert die Kapazität pro Token nach der Attention (nichtlineare Trans-

formation).
• Residuals stabilisieren Training tiefer Netze und erleichtern Gradientenfluss.
• LayerNorm normalisiert Aktivierungen und verbessert Trainingsstabilität (insb. bei großen Model-

len).

37

1.7 Modellarchitektur

Einordnung
• Vertiefung Modellarchitekturen: Bausteine wiederholen sich pro Layer (Attention + FFN + Norm +

Residual).
• Skalierungsgesetze (grobe Intuition): Mehr Daten/Parameter/Compute führen oft zu besseren Mo-

dellen.
• Architekturentscheidungen beeinflussen Latenz, Speicherbedarf und Kontextlänge.

38

Einordnung
• Zusammenfassung der Architektur-Bausteine und ihrer Rollen (Aufmerksamkeit, Nichtlinearität, Sta-

bilisierung).
• Mentales Modell: Attention mischt Information über Positionen, FFN transformiert pro Position.
• Brücke zu neueren Varianten: effiziente Attention, längere Kontexte, Speichermechanismen.

39

Einordnung
• Gesamtüberblick der Modellarchitekturen: Einordnung verschiedener Familien und Trade-offs.
• Wichtige Achsen: Kontextlänge, Compute pro Token, Trainingsobjective, Einsatzgebiet.
• Vorbereitung für den Ausblick auf Titans/Memory-Konzepte.

40

Einordnung
• Titans als Ausblick: Erweiterung klassischer Transformer um explizite Memory-Mechanismen.
• Motivation: Grenzen durch Kontextfenster, Langzeitkonsistenz und effiziente Speicherung von Wis-

sen.
• „Memory“ als zusätzliche Komponente neben Parametern und Kontext (Prompt).

41

Einordnung
• Short-Term vs. Long-Term Memory: kurzfristige Kontextverarbeitung vs. längerfristige Speiche-

rung/Abfrage.
• Ziel: relevante Informationen selektiv behalten (komprimieren) statt alles im Kontext zu halten.
• Parallele zu RAG: Auch dort wird Wissen extern gehalten, aber mit anderen Mechanismen/Trade-

offs.

42

Einordnung
• Persistent Memory: Informationen werden über Sessions/Anfragen hinweg gespeichert und wieder-

verwendet.
• Nutzen: Personalisierung, langfristige Aufgabenverfolgung, konsistente Wissensbasis.
• Herausforderung: Aktualisierung, Vergessen, Datenschutz und Kontrolle über gespeicherte Inhalte.

43

1.8 Ausblick: Titans

Einordnung
• Hinweis: Titans ist ein aktueller Ansatz. Die Details können sich noch ändern.
• Zusammenfassung Titans: Memory als dritte Säule neben Parametern und Prompt-Kontext.
• Einordnung: unterschiedliche Speicherarten lösen unterschiedliche Probleme (Kontextlänge vs. Lang-

zeitkonsistenz).
• Ausblick: Kombinationen aus RAG, Caching und Memory-Architekturen in modernen Systemen.

44

Einordnung
• Grenzen von LLMs: Halluzinationen, begrenztes Kontextfenster, Kosten (Compute/Token).
• Sicherheits- und Qualitätsaspekte: Prompt Injection, Datenleaks, Bias und fehlende Garantien.
• Konsequenz für Praxis: Evaluierung, Quellen, Guardrails und human-in-the-loop bei kritischen An-

wendungen.

45

46

1.9 Grenzen des klassischen Language Modells

47

1.10 Fazit und Diskussion

48

1.11 Glossar

49

1.12 Literaturverzeichnis

Alammar, J. & Grootendorst, M. (2024). Hands-On Large Language Models: Language Understanding and Generation.
Sebastopol, CA: O’Reilly Media.

1.12.1 Begleitmaterial

Keßler, K. (2025). LLM für den Hausgebrauch – Notebooks und Materialien.
GitHub: https://github.com/karkessler/llm-hausgebrauch
DOI: https://doi.org/10.5281/zenodo.18293327

50

https://github.com/karkessler/llm-hausgebrauch
https://doi.org/10.5281/zenodo.18293327

	Zusammenfassung
	LLM für den Hausgebrauch
	Motivation
	Transformer
	Mathematische Grundlagen
	Ein Rechenbeispiel
	Lernprozess und Backpropagation
	Wie entsteht das Modell?
	Modellarchitektur
	Ausblick: Titans
	Grenzen des klassischen Language Modells
	Fazit und Diskussion
	Glossar
	Literaturverzeichnis

